參考文獻 |
1. Palladino, M.A., et al., Anti-TNF-alpha therapies: The next generation. Nature Reviews Drug Discovery, 2003. 2(9): p. 736-746.
2. Moss, M.L., L. Sklair-Tavron, and R. Nudelman, Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nature Clinical Practice Rheumatology, 2008. 4(6): p. 300-309.
3. Newton, R.C., et al., Biology of TACE inhibition. Annals of the Rheumatic Diseases, 2001. 60: p. III25-III32.
4. Gould, D.J., C. Bright, and Y. Chernajovsky, Inhibition of established collagen-induced arthritis with a tumour necrosis factor-alpha inhibitor expressed from a self-contained doxycycline regulated plasmid. Arthritis Research & Therapy, 2004. 6(2): p. R103-R113.
5. Petros, R.A. and J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 2010. 9(8): p. 615-627.
6. Ferber, D., Gene therapy: Safer and virus-free? Science, 2001. 294(5547): p. 1638-1642.
7. Fosgerau, K. and T. Hoffmann, Peptide therapeutics: current status and future directions. Drug Discovery Today, 2015. 20(1): p. 122-128.
8. Tsai, C.W., et al., The consideration of indolicidin modification to balance its hemocompatibility and delivery efficiency. International Journal of Pharmaceutics, 2015. 494(1): p. 498-505.
9. Hu, W.-W., et al., A novel application of indolicidin for gene delivery. International Journal of Pharmaceutics, 2013. 456(2): p. 293-300.
10. Tsai, C.W., et al., Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J Mol Biol, 2009. 392(3): p. 837-54.
11. Hoyer, J., et al., Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery. Beilstein J Org Chem, 2012. 8: p. 1788-97.
12. Kim, H., M. Kitamatsu, and T. Ohtsuki, Enhanced intracellular peptide delivery by multivalent cell-penetrating peptide with bioreducible linkage. Bioorganic & Medicinal Chemistry Letters, 2018. 28(3): p. 378-381.
13. Amand, H.L., B. Norden, and K. Fant, Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation. Biochem Biophys Res Commun, 2012. 418(3): p. 469-74.
14. Moser, M. and O. Leo, Key concepts in immunology. Vaccine, 2010. 28: p. C2-C13.
15. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature, 2007. 449(7164): p. 819-26.
16. Carswell, E.A., et al., An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A, 1975. 72(9): p. 3666-70.
17. Van Deventer, S.J., Tumour necrosis factor and Crohn′s disease. Gut, 1997. 40(4): p. 443-8.
18. Matsuno, H., et al., The role of TNF-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse chimera. Rheumatology, 2002. 41(3): p. 329-337.
19. Huang, Z., et al., The effect of targeted delivery of anti-TNF-alpha oligonucleotide into CD169+ macrophages on disease progression in lupus-prone MRL/lpr mice. Biomaterials, 2012. 33(30): p. 7605-12.
20. D.Health, Our inheritance, our future: realising the potential of genetics in the NHS. Genetics White Paper, 2003: p. chapter 1.25, 2003.
21. K. B. Kaufmann, H.B., A. Galy, A. Schambach, and M. Grez, "Gene therapy on the move, Gene therapy on the move. Embo Molecular Medicine, vol. 5, pp. 1642-1661, 2013.
22. K. Kaushansky, M.A.L., J.T. Prchal, M.M. Levi, O.W. Press, L.J. Burns, M., Williams Hematology, 9th edition. 2006.
23. Kurreck, J., Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem, 2003. 270(8): p. 1628-44.
24. de Fougerolles, A., et al., Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov, 2007. 6(6): p. 443-53.
25. Grimm, D. and M.A. Kay, Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? Journal of Clinical Investigation, 2007. 117(12): p. 3633-3641.
26. Elsabahy, M., A. Nazarali, and M. Foldvari, Non-Viral Nucleic Acid Delivery: Key Challenges and Future Directions. Current Drug Delivery, 2011. 8(3): p. 235-244.
27. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
28. Khatri, N., et al., In vivo delivery aspects of miRNA, shRNA and siRNA. Crit Rev Ther Drug Carrier Syst, 2012. 29(6): p. 487-527.
29. Rao, D.D., et al., siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev, 2009. 61(9): p. 746-59.
30. Martinez, J., et al., Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002. 110(5): p. 563-74.
31. Whitehead, K.A., R. Langer, and D.G. Anderson, Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov, 2009. 8(2): p. 129-38.
32. Crooke, S.T., Progress in antisense technology. Annu Rev Med, 2004. 55: p. 61-95.
33. Dias, N. and C.A. Stein, Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther, 2002. 1(5): p. 347-55.
34. Forte, A., et al., Small interfering RNAs and antisense oligonucleotides for treatment of neurological diseases. Curr Drug Targets, 2005. 6(1): p. 21-9.
35. Dinc, E., Antisense Oligodeoxynucleotide Technology: A Novel Tool for Gene Silencing in Higher Plants. Institute of Plant Biology Biological Research Centre Hungarian Academy of Sciences Doctoral School of Biology University of Szeged, 2012.
36. Emine, M.D., Antisense Oligodeoxynucleotide Technology:A Novel Tool for Gene Silencing in Higher Plants. 2012.
37. Jackson, A.L., et al., Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. Rna, 2006. 12(7): p. 1179-87.
38. Wang, J., et al., Delivery of siRNA therapeutics: barriers and carriers. Aaps j, 2010. 12(4): p. 492-503.
39. Paddison, P.J., et al., Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev, 2002. 16(8): p. 948-58.
40. Chen, Y., G. Cheng, and R.I. Mahato, RNAi for treating hepatitis B viral infection. Pharm Res, 2008. 25(1): p. 72-86.
41. Kariko, K., et al., Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol, 2004. 172(11): p. 6545-9.
42. Crystal, R.G., Transfer of genes to humans: early lessons and obstacles to success. Science, 1995. 270(5235): p. 404-10.
43. Al-Dosari, M.S. and X. Gao, Nonviral gene delivery: principle, limitations, and recent progress. Aaps j, 2009. 11(4): p. 671-81.
44. Santos, J.L., et al., Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Curr Gene Ther, 2011. 11(1): p. 46-57.
45. Impellizeri, J., et al., Electroporation in veterinary oncology. Veterinary Journal, 2016. 217: p. 18-25.
46. Titomirov, A.V., S. Sukharev, and E. Kistanova, In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta, 1991. 1088(1): p. 131-4.
47. Mir, L.M., Electroporation-based gene therapy: recent evolution in the mechanism description and technology developments. Methods Mol Biol, 2014. 1121: p. 3-23.
48. Yang, N.S., et al., In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci U S A, 1990. 87(24): p. 9568-72.
49. Uchida, M., et al., Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios (TM) gun system. Biological & Pharmaceutical Bulletin, 2002. 25(5): p. 690-693.
50. Poste, G., D. Papahadjopoulos, and W.J. Vail, Lipid vesicles as carriers for introducing biologically active materials into cells. Methods Cell Biol, 1976. 14: p. 33-71.
51. Chen, C.T., et al., Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. Acs Applied Materials & Interfaces, 2017. 9(7): p. 5864-5873.
52. Gaber, M., et al., Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes. Journal of Controlled Release, 2017. 254: p. 75-91.
53. Hellstrand, E., et al., Membrane lipid co-aggregation with alpha-synuclein fibrils. PLoS One, 2013. 8(10): p. e77235.
54. Akhtar, S., et al., The delivery of antisense therapeutics. Adv Drug Deliv Rev, 2000. 44(1): p. 3-21.
55. Lebedeva, I., et al., Cellular delivery of antisense oligonucleotides. Eur J Pharm Biopharm, 2000. 50(1): p. 101-19.
56. Zelphati, O., et al., Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochimica Et Biophysica Acta-Lipids and Lipid Metabolism, 1998. 1390(2): p. 119-133.
57. Ulasov, A.V., et al., Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy. Mol Ther, 2011. 19(1): p. 103-12.
58. Grzelinski, M., et al., RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther, 2006. 17(7): p. 751-66.
59. Ewe, A., et al., Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Deliv Transl Res, 2017. 7(2): p. 206-216.
60. Bellich, B., et al., "The Good, the Bad and the Ugly" of Chitosans. Marine Drugs, 2016. 14(5): p. 31.
61. Frankel, A.D. and C.O. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988. 55(6): p. 1189-93.
62. Green, M. and P.M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988. 55(6): p. 1179-88.
63. Joliot, A., et al., Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A, 1991. 88(5): p. 1864-8.
64. Guidotti, G., L. Brambilla, and D. Rossi, Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol Sci, 2017. 38(4): p. 406-424.
65. Regberg, J., A. Srimanee, and U. Langel, Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel), 2012. 5(9): p. 991-1007.
66. Hoyer, J. and I. Neundorf, Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res, 2012. 45(7): p. 1048-56.
67. Wagner, E., M. Ogris, and W. Zauner, Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv Drug Deliv Rev, 1998. 30(1-3): p. 97-113.
68. Rothbard, J.B., et al., Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J Med Chem, 2002. 45(17): p. 3612-8.
69. Trabulo, S., et al., Cell-Penetrating Peptides—Mechanisms of Cellular Uptake and Generation of Delivery Systems. Pharmaceuticals, 2010. 3(4): p. 961.
70. Khalil, I.A., et al., High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. Journal of Biological Chemistry, 2006. 281(6): p. 3544-3551.
71. Kaplan, I.M., J.S. Wadia, and S.F. Dowdy, Cationic TAT peptide transduction domain enters cells by macropinocytosis (vol 102, pg 247, 2005). Journal of Controlled Release, 2005. 107(3): p. 571-572.
72. Poon, G.M.K. and J. Gariepy, Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochemical Society Transactions, 2007. 35: p. 788-793.
73. Nakase, I., et al., Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry, 2007. 46(2): p. 492-501.
74. Mishra, A., et al., Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(41): p. 16883-16888.
75. Selsted, M.E., et al., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem, 1992. 267(7): p. 4292-5.
76. Bechinger, B., M. Zasloff, and S.J. Opella, Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci, 1993. 2(12): p. 2077-84.
77. Zhang, L., A. Rozek, and R.E. Hancock, Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem, 2001. 276(38): p. 35714-22.
78. Erazo-Oliveras, A., et al., Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel), 2012. 5(11): p. 1177-209.
79. Angeles-Boza, A.M., et al., Generation of endosomolytic reagents by branching of cell-penetrating peptides: tools for the delivery of bioactive compounds to live cells in cis or trans. Bioconjug Chem, 2010. 21(12): p. 2164-7.
80. Chugh, A., E. Amundsen, and F. Eudes, Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep, 2009. 28(5): p. 801-10.
81. Sung, M., G.M. Poon, and J. Gariepy, The importance of valency in enhancing the import and cell routing potential of protein transduction domain-containing molecules. Biochim Biophys Acta, 2006. 1758(3): p. 355-63.
82. Tung, C.H., S. Mueller, and R. Weissleder, Novel branching membrane translocational peptide as gene delivery vector. Bioorg Med Chem, 2002. 10(11): p. 3609-14.
83. Rudolph, C., et al., Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J Biol Chem, 2003. 278(13): p. 11411-8.
84. McKenzie, D.L., K.Y. Kwok, and K.G. Rice, A potent new class of reductively activated peptide gene delivery agents. J Biol Chem, 2000. 275(14): p. 9970-7.
85. Moon, I.J., et al., Marked transfection enhancement by the DPL (DNA/peptide/lipid) complex. Int J Mol Med, 2007. 20(4): p. 429-37.
86. Torres, A.G. and M.J. Gait, Exploiting cell surface thiols to enhance cellular uptake. Trends Biotechnol, 2012. 30(4): p. 185-90.
87. Rudolph, C., et al., Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm Res, 2004. 21(9): p. 1662-9.
88. Lee, S.J., S.H. Yoon, and K.O. Doh, Enhancement of gene delivery using novel homodimeric tat peptide formed by disulfide bond. J Microbiol Biotechnol, 2011. 21(8): p. 802-7.
89. Kim, B.K., et al., Homodimeric SV40 NLS peptide formed by disulfide bond as enhancer for gene delivery. Bioorg Med Chem Lett, 2012. 22(17): p. 5415-8.
90. Green, T.R., et al., Polyethylene particles of a ′critical size′ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials, 1998. 19(24): p. 2297-302.
91. Tsai, C.W., et al., Development of an indolicidin-derived peptide by reducing membrane perturbation to decrease cytotoxicity and maintain gene delivery ability. Colloids and Surfaces B-Biointerfaces, 2018. 165: p. 18-27.
92. Gasparini, G., et al., Cellular Uptake of Substrate-Initiated Cell-Penetrating Poly(disulfide)s. Journal of the American Chemical Society, 2014. 136(16): p. 6069-6074.
93. Liu, Y., et al., Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem, 1997. 69(2): p. 581-93.
94. Dong, L., et al., Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-alpha. J Control Release, 2009. 134(3): p. 214-20. |