參考文獻 |
1. K.M. Boycott, M.R. Vanstone, D.E. Bulman, and A.E. MacKenzie, Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nature Reviews Genetics, 2013. 14(10): p. 681-691.
2. U. Modlich, J. Bohne, M. Schmidt, C. von Kalle, S. Knoss, A. Schambach, and C. Baum, Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood, 2006. 108(8): p. 2545-2553.
3. L. Parhamifar, A.K. Larsen, A.C. Hunter, T.L. Andresen, and S.M. Moghimi, Polycation cytotoxicity: a delicate matter for nucleic acid therapy-focus on polyethylenimine. Soft Matter, 2010. 6(17): p. 4001-4009.
4. A. Dehshahri, R.K. Oskuee, W.T. Shier, A. Hatefi, and M. Ramezani, Gene transfer efficiency of high primary amine content, hydrophobic, alkyl-oligoamine derivatives of polyethylenimine. Biomaterials, 2009. 30(25): p. 4187-4194.
5. A. Chugh, F. Eudes, and Y.S. Shim, Cell-Penetrating Peptides: Nanocarrier for Macromolecule Delivery in Living Cells. IUBMB Life, 2010. 62(3): p. 183-193.
6. H. Wang, C.Y. Zhong, J.F. Wu, Y.B. Huang, and C.B. Liu, Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide. Journal of Controlled Release, 2010. 143(1): p. 64-70.
7. A. Baoum, S.X. Xie, A. Fakhari, and C. Berkland, "Soft" Calcium Crosslinks Enable Highly Efficient Gene Transfection Using TAT Peptide. Pharmaceutical Research, 2009. 26(12): p. 2619-2629.
8. A.A. Baoum and C. Berkland, Calcium Condensation of DNA Complexed with Cell-Penetrating Peptides Offers Efficient, Noncytotoxic Gene Delivery. J. Pharm. Sci., 2011. 100(5): p. 1637-1642.
9. S. Yamano, J. Dai, S. Hanatani, K. Haku, T. Yamanaka, M. Ishioka, T. Takayama, C. Yuvienco, S. Khapli, A.M. Moursi, and J.K. Montclare, Long-term efficient gene delivery using polyethylenimine with modified Tat peptide. Biomaterials, 2014. 35(5): p. 1705-1715.
10. H.J. Lee, R. Namgung, W.J. Kim, J.I. Kim, and I.K. Park, Targeted delivery of microRNA-145 to metastatic breast cancer by peptide conjugated branched PEI gene carrier. Macromolecular Research, 2013. 21(11): p. 1201-1209.
11. M.F. Cordeiro, G.S. Schultz, R.R. Ali, S.S. Bhattacharya, and P.T. Khaw, Molecular therapy in ocular wound healing. British Journal of Ophthalmology, 1999. 83(11): p. 1219-1224.
12. P.H. Krebsbach, K. Gu, R.T. Franceschi, and R.B. Rutherford, Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Human Gene Therapy, 2000. 11(8): p. 1201-1210.
13. E. Tomlinson and A.P. Rolland, Controllable gene therapy Pharmaceutics of non-viral gene delivery systems (vol 39, pg 357, 1996). Journal of Controlled Release, 1996. 42(3): p. 297-297.
14. G. del Solar, R. Giraldo, M.J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas, Replication and control of circular bacterial plasmids. Microbiology and Molecular Biology Reviews, 1998. 62(2): p. 434-+.
15. S.C. De Smedt, J. Demeester, and W.E. Hennink, Cationic polymer based gene delivery systems. Pharmaceutical Research, 2000. 17(2): p. 113-126.
16. M.S. Al-Dosari and X. Gao, Nonviral Gene Delivery: Principle, Limitations, and Recent Progress. Aaps Journal, 2009. 11(4): p. 671-681.
17. W. Zauner, S. Brunner, M. Buschle, M. Ogris, and E. Wagner, Differential behaviour of lipid based and polycation based gene transfer systems in transfecting primary human fibroblasts: a potential role of polylysine in nuclear transport. Biochimica Et Biophysica Acta-General Subjects, 1999. 1428(1): p. 57-67.
18. J.F. Xing, L.D. Deng, S.T. Guo, A.J. Dong, and X.J. Liang, Polycationic Nanoparticles as Nonviral Vectors Employed for Gene Therapy in vivo. Mini-Reviews in Medicinal Chemistry, 2010. 10(2): p. 126-137.
19. X.J. Cai, Y.Y. Li, D. Yue, Q.Y. Yi, S. Li, D.L. Shi, and Z.W. Gu, Reversible PEGylation and Schiff-base linked imidazole modification of polylysine for high-performance gene delivery. Journal of Materials Chemistry B, 2015. 3(8): p. 1507-1517.
20. K.L. Douglas, C.A. Piecirillo, and M. Tabrizian, Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. Journal of Controlled Release, 2006. 115(3): p. 354-361.
21. C. Moreira, H. Oliveira, L.R. Pires, S. Simoes, M.A. Barbosa, and A.P. Pego, Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomaterialia, 2009. 5(8): p. 2995-3006.
22. M. Breunig, U. Lungwitz, R. Liebl, C. Fontanari, J. Klar, A. Kurtz, T. Blunk, and A. Goepferich, Gene delivery with tow molecular weight linear polyethytenimines. Journal of Gene Medicine, 2005. 7(10): p. 1287-1298.
23. S.W. Kim, T. Ogawa, Y. Tabata, and I. Nishimura, Efficacy and cytotoxicity of cationic-agent-mediated nonviral gene transfer into osteoblasts. Journal of Biomedical Materials Research Part A, 2004. 71A(2): p. 308-315.
24. Y.K. Oh, D. Suh, J.M. Kim, H.G. Choi, K. Shin, and J.J. Ko, Polyethylenimine-mediated cellular uptake, nucleus trafficking and expression of cytokine plasmid DNA. Gene Therapy, 2002. 9(23): p. 1627-1632.
25. A. von Harpe, H. Petersen, Y.X. Li, and T. Kissel, Characterization of commercially available and synthesized polyethylenimines for gene delivery. Journal of Controlled Release, 2000. 69(2): p. 309-322.
26. 張萬豐, 探討聚乙烯亞胺轉殖綠螢光蛋白基因進入老鼠胚胎纖維母細胞的最佳條件. 2008. 嘉南藥理科技大學.
27. K. Kilk, S. El-Andaloussi, P. Jarver, A. Meikas, A. Valkna, T. Bartfai, P. Kogerman, M. Metsis, and U. Langel, Evaluation. of transportan 10 in PEI mediated plasmid delivery assay. Journal of Controlled Release, 2005. 103(2): p. 511-523.
28. P. Chollet, M.C. Favrot, A. Hurbin, and J.L. Coll, Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. Journal of Gene Medicine, 2002. 4(1): p. 84-91.
29. D. Fischer, Y.X. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel, In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003. 24(7): p. 1121-1131.
30. I.N. Shokolenko, M.F. Alexeyev, S.P. LeDoux, and G.L. Wilson, TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair, 2005. 4(4): p. 511-518.
31. S. Futaki, Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int. J. Pharm., 2002. 245(1-2): p. 1-7.
32. Y.W. Huang, H.J. Lee, L.M. Tolliver, and R.S. Aronstam, Delivery of Nucleic Acids and Nanomaterials by Cell-Penetrating Peptides: Opportunities and Challenges. Biomed Research International, 2015: p. 16.
33. W.Y. Li, Y.J. Liu, J.W. Du, K.F. Ren, and Y.X. Wang, Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection. Nanoscale, 2015. 7(18): p. 8476-8484.
34. J. Hoyer and I. Neundorf, Peptide Vectors for the Nonviral Delivery of Nucleic Acids. Accounts Chem. Res., 2012. 45(7): p. 1048-1056.
35. J.M. Gump and S.F. Dowdy, TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol. Med, 2007. 13(10): p. 443-448.
36. B.R. Liu, Y.W. Huang, J.G. Winiarz, H.J. Chiang, and H.J. Lee, Intracellular delivery of quantum dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism. Biomaterials, 2011. 32(13): p. 3520-3537.
37. K. Najjar, A. Erazo-Oliveras, D.J. Brock, T.Y. Wang, and J.P. Pellois, An L- to D-Amino Acid Conversion in an Endosomolytic Analog of the Cell- penetrating Peptide TAT Influences Proteolytic Stability, Endocytic Uptake, and Endosomal Escape. Journal of Biological Chemistry, 2017. 292(3): p. 847-861.
38. M. Mae and U. Langel, Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr. Opin. Pharmacol., 2006. 6(5): p. 509-514.
39. M.E. Selsted, M.J. Novotny, W.L. Morris, Y.Q. Tang, W. Smith, and J.S. Cullor, INDOLICIDIN, A NOVEL BACTERICIDAL TRIDECAPEPTIDE AMIDE FROM NEUTROPHILS. J. Biol. Chem., 1992. 267(7): p. 4292-4295.
40. 蔡秉錩, Indolicidin及其類似物之生物活性與直接穿膜特性. 2012. 國立中央大學.
41. W.W. Hu, Z.W. Lin, R.C. Ruaan, W.Y. Chen, S.L.C. Jin, and Y. Chang, A novel application of indolicidin for gene delivery. International Journal of Pharmaceutics, 2013. 456(2): p. 293-300.
42. H. Li, T.Y. Tsui, and W.X. Ma, Intracellular Delivery of Molecular Cargo Using Cell-Penetrating Peptides and the Combination Strategies. International Journal of Molecular Sciences, 2015. 16(8): p. 19518-19536.
43. E.J. Kwon, S. Liong, and S.H. Pun, A Truncated HGP Peptide Sequence That Retains Endosomolytic Activity and Improves Gene Delivery Efficiencies. Mol. Pharm., 2010. 7(4): p. 1260-1265.
44. Y.M. Lee, D. Lee, J. Kim, H. Park, and W.J. Kim, RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer. Journal of Controlled Release, 2015. 205: p. 172-180.
45. T.T. Zhang, X. Xue, D.L. He, and J.T. Hsieh, A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett., 2015. 365(2): p. 156-165.
46. C.W. Tsai, Z.W. Lin, W.F. Chang, Y.F. Chen, and W.W. Hu, Development of an indolicidin-derived peptide by reducing membrane perturbation to decrease cytotoxicity and maintain gene delivery ability. Colloids and Surfaces B-Biointerfaces, 2018. 165: p. 18-27.
47. S.J. Lee, S.H. Won, and K.O. Doh, Enhancement of Gene Delivery Using Novel Homodimeric Tat Peptide Formed by Disulfide Bond. Journal of Microbiology and Biotechnology, 2011. 21(8): p. 802-807.
48. J.S. Oh, M. Park, J.S. Kim, and J.H. Jang, Enhanced Cellular Transfection by Ternary Non-Viral Gene Vectors Coupled with Adeno-Associated Virus-Derived Peptides. Macromol. Biosci., 2014. 14(1): p. 121-130.
49. C. Subbalakshmi, V. Krishnakumari, N. Sitaram, and R. Nagaraj, Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. J. Biosci., 1998. 23(1): p. 9-13.
50. V.V. Andrushchenko, M.H. Aarabi, L.T. Nguyen, E.J. Prenner, and H.J. Vogel, Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Biochimica Et Biophysica Acta-Biomembranes, 2008. 1778(4): p. 1004-1014.
51. H.A. Rydberg, M. Matson, H.L. Amand, E.K. Esbjorner, and B. Norden, Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides. Biochemistry, 2012. 51(27): p. 5531-5539.
52. M.L. Jobin, M. Blanchet, S. Henry, S. Chaignepain, C. Manigand, S. Castano, S. Lecomte, F. Burlina, S. Sagan, and I.D. Alves, The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochimica Et Biophysica Acta-Biomembranes, 2015. 1848(2): p. 593-602.
53. L.C. Hung, I. Jiang, C.J. Chen, J.Y. Lu, Y.F. Hsieh, P.H. Kuo, Y.L. Hung, L.H.C. Wang, M.D.T. Chang, and S.C. Sue, Heparin-Promoted Cellular Uptake of the Cell-Penetrating Glycosaminoglycan Binding Peptide, GBP(ECP), Depends on a Single Tryptophan. Acs Chemical Biology, 2017. 12(2): p. 398-406.
54. 葉喬淳, 以短鏈胜?接枝聚乙烯亞胺來進行基因輸送應用之研究. 2013. 國立中央大學.
55. D.L. McKenzie, K.Y. Kwok, and K.G. Rice, A potent new class of reductively activated peptide gene delivery agents. Journal of Biological Chemistry, 2000. 275(14): p. 9970-9977.
56. D.S. Manickam and D. Oupicky, Multiblock reducible copolypeptides containing histidine-rich and nuclear localization sequences for gene delivery. Bioconjugate Chem., 2006. 17(6): p. 1395-1403.
57. M. Balakirev, G. Schoehn, and J. Chroboczek, Lipoic acid-derived amphiphiles for redox-controlled DNA delivery. Chem. Biol., 2000. 7(10): p. 813-819.
58. M.L. Read, K.H. Bremner, D. Oupicky, N.K. Green, P.F. Searle, and L.W. Seymour, Vectors based on reducible polycations facilitate intracellular release of nucleic acids. Journal of Gene Medicine, 2003. 5(3): p. 232-245.
59. H.L. Amand, B. Norden, and K. Fant, Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation. Biochem. Biophys. Res. Commun., 2012. 418(3): p. 469-474.
60. F. Simeoni, M.C. Morris, F. Heitz, and G. Divita, Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Research, 2003. 31(11): p. 2717-2724.
61. 黃詩淳, 以二元體形式之Indolicidin應用於去氧寡核?酸之輸送. 2016. 國立中央大學.
62. L.J. Zhang, A. Rozek, and R.E.W. Hancock, Interaction of cationic antimicrobial peptides with model membranes. Journal of Biological Chemistry, 2001. 276(38): p. 35714-35722.
63. G. Grandinetti, N.P. Ingle, and T.M. Reineke, Interaction of Poly(ethylenimine)-DNA Polyplexes with Mitochondria: Implications for a Mechanism of Cytotoxicity. Molecular Pharmaceutics, 2011. 8(5): p. 1709-1719.
64. G. Gasparini, E.K. Bang, G. Molinard, D.V. Tulumello, S. Ward, S.O. Kelley, A. Roux, N. Sakai, and S. Matile, Cellular Uptake of Substrate-Initiated Cell-Penetrating Poly(disulfide)s. Journal of the American Chemical Society, 2014. 136(16): p. 6069-6074. |