博碩士論文 105223010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.221.89.18
姓名 林廷駿(Ting-Chun Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以掃描式穿隧電子顯微鏡觀察氫氧化鎳於金(111)上結構及對甲醛氧化活性
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 甲醛為常見的室內空氣汙染物,其濃度過高時會對人體造成傷害,包含森林大火、菸草煙霧、汽車尾氣等等都會產生甲醛,故而檢測甲醛有其必要性存在,而電化學的氧化還原反應十分迅速,可即時偵測溶液中的甲醛濃度,故研究可以提升甲醛氧化活性的觸媒,不但可用於檢測甲醛濃度,也可去除溶液中的甲醛或當作燃料電池的一個方向。
  此一研究以電化學方式將氫氧化鎳沉積於Au(111)電極表面,探討它對催化甲醛氧化的活性,並藉由掃描式穿隧電子顯微鏡輔助觀察其表面結構。實驗結果顯示Au(111)電極經1~2層氫氧化鎳修飾後,甲醛氧化電流從16.6提升至29.1 mA/cm2。在相同環境下,在Pt(111)上甲醛氧化電流為18.1 mA/cm2,顯示Ni/Au(111)電極大約有60%更高的活性。而從Koutecky–Levich方程式的計算結果得知,甲醛氧化反應轉移電子數在Au(111)和 Ni/Au(111)電極上,轉移電子數為0.94和2.6,經甲醛和[OH-]濃度變化的實驗結果推導出,甲醛氧化反應隨電極材料而不同,在金(111)為2HCHO+4OH-→2HCOO-+2H2O+H2+2e-,在Ni/Au(111)則是HCHO+3OH-→HCOO-+2H2O+2e-,原因可能是Ni的修飾導致其氫原子吸附自由能的改變。掃描式穿隧電子顯微鏡指出氫氧化鎳原子以六方最密堆積吸附於金電極上,於負電位區間其原子間距3 A,而正電位時其間距縮減為2.8 A,與文獻吻合,相對應電位主導之Ni(OH)2/NiOOH轉變。同時電極表面形貌在Ni(OH)2氧化為NiOOH後會由平坦轉變成三維球形顆粒。
摘要(英) Formaldehyde (HCHO) is a commonly used reducing agent for electroless copper deposition in the electronic industry. It can be an intermediate produced in the oxidation of small organic molecules such as methanol. In addition to the notorious poisoning effect of carbon monoxide on the performance of direct methanol fuel cells, incomplete oxidation of methanol can lead to formaldehyde and formic acid, resulting in a lower cell voltage and less efficiency than the predicted. Formaldehyde is also known as a common air pollutant, which comes from forest fires, tobacco smoke, automobile exhaust, etc. It is harmful to human body above a certain concentration.
  In this study, nickel hydroxide was electrodeposited on the surface of Au(111) electrode to fabricate a composite electrode, which has been used to catalyze the oxidation of formaldehyde. Voltammetric results show that the oxidation current of HCHO at bare and nickel hydroxide modified Au(111) electrodes have peak current densities of 16.6 and 29.1 mA/cm2, as compared with 18.1 mA/cm2 observed at Pt(111). The nickel-modified Au(111) has about 60% higher activity than Pt(111). The Koutecky–Levich plots were constructed from the results of rotating disk electrodes of Au(111) and Ni/Au(111), yielding a total number of electron of 0.9 and 2.64. These results imply that the oxidation of HCHO at Au(111) electrode is 2HCHO+4OH-→2HCOO-+2H2O+H2+2e-,at Ni/Au(111) electrode is HCHO+3OH-→HCOO-+2H2O+2e-. STM shows that the surface morphology of the Ni film changed from smooth to rough structures with more positive potentials. It is possible to obtain atomic resolution images showing that the nickel hydroxide supported by Au(111) has a hexagonal close packed atomic structure with an interatomic distance of 3 A in the negative potential region and transforms to a more closely packed lattice with a 2.8 A in-plane distance in the positive potential domain.
關鍵字(中) ★ 電化學
★ 甲醛氧化
★ 金(111)
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 viii
第一章、 緒論 1
1-1 甲醛介紹 1
1-2 氫氧化鎳特性及相關文獻回顧 1
1-3 Koutecky–Levich 方程式 2
1-4 衰減全反射式表面增強紅外光譜 3
1-5 甲醛氧化相關文獻 5
第二章、 實驗部分 12
2-1 藥品部分 12
2-2 氣體部分 12
2-3 金屬部分 13
2-4 儀器設備 13
2-5 實驗步驟 16
第三章、 結果與討論 23
3-1 氫氧化鎳於Au(111)電極之電化學特性 23
3-1-1、 循環伏安圖 23
3-1-2、 STM圖 24
3-1-3、 XPS元素分析 26
3-2 甲醛氧化反應 39
3-2-1、 Au(111)電極之甲醛氧化 39
3-2-2、 Ni(111)電極之甲醛氧化 41
3-2-3、 修飾氫氧化鎳Au(111)電極之甲醛氧化 41
第四章、 結論 77
第五章、 參考文獻 78
參考文獻 1. 行政院環保署, 淨化室內空氣之植物應用及管理手冊.
2. A. Van der Ven, D. M., Y. S. Meng and G. Ceder,, Phase Stability of Nickel Hydroxides and Oxyhydroxides. J. Electrochem. Soc. 2006, 153 (2), 210-215.
3. 倩,王?琳, 徐. ?., ?氧化?材料的反?机理和?极制?. ?池工? 2009.
4. Mansour, A. N.; Melendres, C. A., Analysis of X-ray Absorption Spectra of Some Nickel Oxycompounds Using Theoretical Standards. The Journal of Physical Chemistry A 1998, 102 (1), 65-81.
5. Dittrich, H.; Axmann, P.; Wohlfahrt-Mehrens, M.; Garche, J.; Albrecht, S.; Meese-Marktscheffel, J.; Olbrich, A.; Gille, G., Structural study of β-Ni(OH)2 and α-Ni(OH)2 variants for electrode applications. In Zeitschrift fur Kristallographie - Crystalline Materials, 2005; Vol. 220, p 306.
6. White, B. W. a. R. E., Modeling of a Nickel-Hydrogen Cell Phase Reactions in the Nickel Active Material. J. Electrochem. Soc. 2001, 148 (6), 595-609.
7. Visscher, W.; Barendrecht, E., Investigation of thin-film α- and β-Ni(OH)2 electrodes in alkaline solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1983, 154 (1), 69-80.
8. Hall, D. S.; Lockwood, D. J.; Bock, C.; MacDougall, B. R., Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc Math Phys Eng Sci 2015, 471 (2174), 20140792.
9. Hartstein, A.; Kirtley, J. R.; Tsang, J. C., Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers. Physical Review Letters 1980, 45 (3), 201-204.
10. Perminder Bindra, J. R., Mechanisms of Electroless Metal Plating II . Formaldehyde Oxidation. J. Electrochem. Soc 1985, 132 (11), 2581-2589.
11. Nishimura, K.; Machida, K.-i.; Enyo, M., Electrooxidation of formate and formaldehyde on electrodes of alloys between Pd and Group IB metals in alkaline media: Part I. Electrocatalytic properties of component metals. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 251 (1), 103-116.
12. Capon, A.; Parson, R., The oxidation of formic acid at noble metal electrodes: I. Review of previous work. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1973, 44 (1), 1-7.
13. Morales-Guio, C. G.; Stern, L.-A.; Hu, X., Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews 2014, 43 (18), 6555-6569.
14. Czerepak, A., Pt-Ir Tip Etching Techniques for Scanning Tunneling Microscopy. 2011.
15. Kupper, M., Very Sharp Platinum Tips by Electrochemical Etching. 2012.
16. Pissinis, D. E.; Sereno, L. E.; Marioli, J. M., Utilization of Special Potential Scan Programs for Cyclic Voltammetric Development of Different Nickel Oxide-Hydroxide Species on Ni Based Electrodes. Open Journal of Physical Chemistry 2012, 02 (01), 23-33.
17. 呂定塏, 利用電化學方法製備鎳磷、鈷磷、鎳鈷磷合金材料並探討對氫氣析出反應(HER)之活性. 2017.
18. Singh, D., Characteristics and Effects of y-NiOOH on Cell Performance
and a Method to Quantify It in Nickel Electrodes. J. Electrochem. Soc 1998, 145, 116-120.
19. Eslamibidgoli, M. J.; Gross, A.; Eikerling, M., Surface configuration and wettability of nickel(oxy)hydroxides: A first-principles investigation. 2017; Vol. 19, p 22659-22669.
20. Eslamibidgoli, M. J.; Gross, A.; Eikerling, M., Surface configuration and wettability of nickel(oxy)hydroxides: a first-principles investigation. Phys Chem Chem Phys 2017, 19 (34), 22659-22669.
21. Mansour, A. N., Characterization of β?Ni(OH)2 by XPS. Surface Science Spectra 1994, 3 (3), 239-246.
22. Hillebrecht, F. U.; Fuggle, J. C.; Bennett, P. A.; Zo?nierek, Z.; Freiburg, C., Electronic structure of Ni and Pd alloys. II. X-ray photoelectron core-level spectra. Physical Review B 1983, 27 (4), 2179-2193.
23. Lucks, C.; Rossberg, A.; Tsushima, S.; Foerstendorf, H.; Fahmy, K.; Bernhard, G., Formic acid interaction with the uranyl(VI) ion: structural and photochemical characterization. Dalton Trans 2013, 42 (37), 13584-9.
24. Maria Beltowska-Brzezinska, J. H., On The Anodic Oxidation of Fofmaldehyde On Pt, Au And Ft/Au-Alloy Electrodes in Alkaline Solution. J Eleccroanal Chem 1985, 183 (1-2), 167-181.
25. Zhang, Y.; Han, T.; Fang, J.; Xu, P.; Li, X.; Xu, J.; Liu, C.-C., Integrated Pt2Ni alloy@Pt core-shell nanoarchitectures with high electrocatalytic activity for oxygen reduction reaction. Journal of Materials Chemistry A 2014, 2 (29), 11400-11407.
26. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 2012, 11 (6), 550-7.
27. A. N. Mansour; Melendres, C. A., Analysis of X-ray Absorption Spectra of Some Nickel Oxycompounds Using Theoretical. J. Phys. Chem. A 1998, 102, 65-81.
28. Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W., Volcano plots in hydrogen electrocatalysis - uses and abuses. Beilstein J Nanotechnol 2014, 5, 846-54.
29. Pomerantseva, E.; Resini, C.; Kovnir, K.; Kolen’ko, Y. V., Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X 2017, 2 (2), 211-253.
30. Wang, L.-X.; Jiang, X.-E., Bioanalytical Applications of Surface Enhanced Infrared Absorption Spectroscopy. Chinese Journal of Analytical Chemistry (Chinese Version) 2013, 40 (7), 975-982.
31. Ataka, K.; Stripp, S. T.; Heberle, J., Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim Biophys Acta 2013, 1828 (10), 2283-93.
32. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355 (6321).
33. Li, X.; Hao, X.; Abudula, A.; Guan, G., Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A 2016, 4 (31), 11973-12000.
34. Pischel, J.; Pucci, A., Low-Temperature Adsorption of Carbon Monoxide on Gold Surfaces: IR Spectroscopy Uncovers Different Adsorption States on Pristine and Rough Au(111). The Journal of Physical Chemistry C 2015, 119 (32), 18340-18351.
35. Jusys, Z.; Behm, R. J., Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates. Beilstein J Nanotechnol 2014, 5, 747-59.
36. Silwal, A. P.; Yadav, R.; Sprague, J. E.; Lu, H. P., Raman Spectroscopic Signature Markers of Dopamine-Human Dopamine Transporter Interaction in Living Cells. ACS Chem Neurosci 2017, 8 (7), 1510-1518.
37. Chen, Y.; Dai, J.; Zhou, X.; Liu, Y.; Zhang, W.; Peng, G., Raman spectroscopy analysis of the biochemical characteristics of molecules associated with the malignant transformation of gastric mucosa. PLoS One 2014, 9 (4), e93906.
38. Brusciotti, F.; Duby, P., Cyclic voltammetry study of arsenic in acidic solutions. Electrochimica Acta 2007, 52 (24), 6644-6649.
39. Masa, J.; Batchelor-McAuley, C.; Schuhmann, W.; Compton, R. G., Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: Electrocatalysis or misinterpretation. Nano Research 2013, 7 (1), 71-78.
40. Treimer, S.; Tang, A.; Johnson, D. C., A Consideration of the Application of Koutecky-Levich Plots in the Diagnoses of Charge-Transfer Mechanisms at Rotated Disk Electrodes. Electroanalysis 2002, 14 (3).
41. Wehrens-Dijksma, M.; Notten, P. H. L., Electrochemical Quartz Microbalance characterization of Ni(OH)2-based thin film electrodes. Electrochimica Acta 2006, 51 (18), 3609-3621.
42. Han, X. J.; Xu, P.; Xu, C. Q.; Zhao, L.; Mo, Z. B.; Liu, T., Study of the effects of nanometer β-Ni(OH)2 in nickel hydroxide electrodes. Electrochimica Acta 2005, 50 (14), 2763-2769.
43. Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S., New interpretations of XPS spectra of nickel metal and oxides. Surface Science 2006, 600 (9), 1771-1779.
44. Deabate, S.; Henn, F., Structural modifications and electrochemical behaviour of the β(II)-Ni(OH)2/β(III)-NiOOH redox couple upon galvanostatic charging/discharging cycling. Electrochimica Acta 2005, 50 (14), 2823-2835.
45. Zhao, X.; Ding, X.; Xia, Y.; Jiao, X.; Chen, D., Coupling-Effect-Induced Acceleration of Electron Transfer for α-Ni(OH)2 with Enhanced Oxygen Evolution Reaction Activity. ACS Applied Nano Materials 2018, 1 (4), 1476-1483.
46. Xie, J.; Sun, X.; Zhang, N.; Xu, K.; Zhou, M.; Xie, Y., Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2013, 2 (1), 65-74.
47. Herbert Dittrich, P. A., Margret Wohlfahrt-Mehrens, Ju‥ rgen Garche, Sven Albrecht, Julia Meese-Marktscheffel, Armin Olbrich and Gerhard Gille, Structural study of β-Ni(OH)2 and α-Ni(OH)2 variants for electrode applications. 2005, 220, 306-315.
48. Bode, H.; Dehmelt, K.; Witte, J., Zur kenntnis der nickelhydroxidelektrode—I.Uber das nickel (II)-hydroxidhydrat. Electrochimica Acta 1966, 11 (8), 1079-IN1.
49. Oliva, P.; Leonardi, J.; Laurent, J. F.; Delmas, C.; Braconnier, J. J.; Figlarz, M.; Fievet, F.; Guibert, A. d., Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources 1982, 8 (2), 229-255.
50. Nakamura, M.; Ikemiya, N.; Iwasaki, A.; Suzuki, Y.; Ito, M., Surface structures at the initial stages in passive film formation on Ni(111) electrodes in acidic electrolytes. Journal of Electroanalytical Chemistry 2004, 566 (2), 385-391.
51. Tkalych, A. J.; Yu, K.; Carter, E. A., Structural and Electronic Features of β-Ni(OH)2and β-NiOOH from First Principles. The Journal of Physical Chemistry C 2015, 119 (43), 24315-24322.
52. Liu, Y.; Hangarter, C. M.; Garcia, D.; Moffat, T. P., Self-terminating electrodeposition of ultrathin Pt films on Ni: An active, low-cost electrode for H 2 production. Surface Science 2015, 631, 141-154.
53. Wang, R.; Bertocci, U.; Tan, H.; Bendersky, L. A.; Moffat, T. P., Self-Terminated Electrodeposition of Ni, Co, and Fe Ultrathin Films. The Journal of Physical Chemistry C 2016, 120 (29), 16228-16237.
54. Rodriguez, P.; Kwon, Y.; Koper, M. T., The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat Chem 2011, 4 (3), 177-82.
55. Scherer, J.; Ocko, B. M.; Magnussen, O. M., Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: an in situ STM, X-ray scattering, and electrochemical study. Electrochimica Acta 2003, 48 (9), 1169-1191.
56. Ci, S.; Wen, Z.; Qian, Y.; Mao, S.; Cui, S.; Chen, J., NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode. Sci Rep 2015, 5, 11919.
57. Feng, L.; Vrubel, H.; Bensimon, M.; Hu, X., Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys Chem Chem Phys 2014, 16 (13), 5917-21.
58. Medway, S. L.; Lucas, C. A.; Kowal, A.; Nichols, R. J.; Johnson, D., In situ studies of the oxidation of nickel electrodes in alkaline solution. Journal of Electroanalytical Chemistry 2006, 587 (1), 172-181.
59. Brimaud, S.; Behm, R. J., Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy. J Am Chem Soc 2013, 135 (32), 11716-9.
60. Liu, J.; Jiao, M.; Lu, L.; Barkholtz, H. M.; Li, Y.; Wang, Y.; Jiang, L.; Wu, Z.; Liu, D. J.; Zhuang, L.; Ma, C.; Zeng, J.; Zhang, B.; Su, D.; Song, P.; Xing, W.; Xu, W.; Wang, Y.; Jiang, Z.; Sun, G., High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat Commun 2017, 8, 15938.
61. Tang, Y.; Roberts, C. A.; Perkins, R. T.; Wachs, I. E., Revisiting formic acid decomposition on metallic powder catalysts: Exploding the HCOOH decomposition volcano curve. Surface Science 2016, 650, 103-110.
62. Godwin, I. J.; Lyons, M. E. G., Enhanced oxygen evolution at hydrous nickel oxide electrodes via electrochemical ageing in alkaline solution. Electrochemistry Communications 2013, 32, 39-42.
63. Wu, Z.; Huang, X. L.; Wang, Z. L.; Xu, J. J.; Wang, H. G.; Zhang, X. B., Electrostatic induced stretch growth of homogeneous beta-Ni(OH)2 on graphene with enhanced high-rate cycling for supercapacitors. Sci Rep 2014, 4, 3669.
64. Safavi, A.; Maleki, N.; Farjami, F.; Farjami, E., Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. Journal of Electroanalytical Chemistry 2009, 626 (1-2), 75-79.
65. Koza, J. A.; Hull, C. M.; Liu, Y.-C.; Switzer, J. A., Deposition of β-Co(OH)2 Films by Electrochemical Reduction of Tris(ethylenediamine)cobalt(III) in Alkaline Solution. Chemistry of Materials 2013, 25 (9), 1922-1926.
66. Cantane, D. A.; Gonzalez, E. R., Chemical Selectivity during the Electro-Oxidation of Ethanol on Unsupported Pt Nanoparticles. Journal of the Electrochemical Society 2012, 159 (3), B355-B359.
67. Caban-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S., Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat Mater 2015, 14 (12), 1245-51.
68. Young, K.-H.; Wang, L.; Yan, S.; Liao, X.; Meng, T.; Shen, H.; Mays, W., Fabrications of High-Capacity Alpha-Ni(OH)2. Batteries 2017, 3 (1), 6.
69. Lee, S. C.; Patil, U. M.; Kim, S. J.; Ahn, S.; Kang, S.-W.; Jun, S. C., All-solid-state flexible asymmetric micro supercapacitors based on cobalt hydroxide and reduced graphene oxide electrodes. RSC Advances 2016, 6 (50), 43844-43854.
70. Ciesielczyk, F.; Bartczak, P.; Wieszczycka, K.; Siwi?ska-Stefa?ska, K.; Nowacka, M.; Jesionowski, T., Adsorption of Ni(II) from model solutions using co-precipitated inorganic oxides. Adsorption 2013, 19 (2-4), 423-434.
71. Bai, B.; Qiao, Q.; Li, J.; Hao, J., Progress in research on catalysts for catalytic oxidation of formaldehyde. Chinese Journal of Catalysis 2016, 37 (1), 102-122.
72. Menezes, P. W.; Indra, A.; Das, C.; Walter, C.; Gobel, C.; Gutkin, V.; Schmeiβer, D.; Driess, M., Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting. ACS Catalysis 2017, 7 (1), 103-109.
73. Liang, H.; Gandi, A. N.; Anjum, D. H.; Wang, X.; Schwingenschlogl, U.; Alshareef, H. N., Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Lett 2016, 16 (12), 7718-7725.
74. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M., Energy and fuels from electrochemical interfaces. Nat Mater 2016, 16 (1), 57-69.
75. Han, A.; Chen, H.; Sun, Z.; Xu, J.; Du, P., High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors. Chem Commun (Camb) 2015, 51 (58), 11626-9.
76. Dubout, Q.; Donati, F.; Wackerlin, C.; Calleja, F.; Etzkorn, M.; Lehnert, A.; Claude, L.; Gambardella, P.; Brune, H., Controlling the spin of co atoms on pt(111) by hydrogen adsorption. Phys Rev Lett 2015, 114 (10), 106807.
77. Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J.; Guan, M.; Lin, M. C.; Zhang, B.; Hu, Y.; Wang, D. Y.; Yang, J.; Pennycook, S. J.; Hwang, B. J.; Dai, H., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun 2014, 5, 4695.
78. Bai, B.; Li, J., Positive Effects of K+Ions on Three-Dimensional Mesoporous Ag/Co3O4Catalyst for HCHO Oxidation. ACS Catalysis 2014, 4 (8), 2753-2762.
79. Kuo, Y.; Yen, P.; Chen, W.; Chen, S.; Yau, S., In situ scanning tunneling microscopy study of cobalt thin film electrodeposited on Pt(111) electrode. Electrochimica Acta 2013, 112, 831-837.
80. Yan, R. W.; Jin, B. K., Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution. Chinese Chemical Letters 2013, 24 (2), 159-162.
81. Louie, M. W.; Bell, A. T., An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc 2013, 135 (33), 12329-37.
82. Chen, W.; Yen, P.; Kuo, Y.; Chen, S.; Yau, S., Epitaxial Electrodeposition of Nickel on Pt(111) Electrode. The Journal of Physical Chemistry C 2012, 116 (40), 21343-21349.
83. Slanac, D. A.; Hardin, W. G.; Johnston, K. P.; Stevenson, K. J., Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J Am Chem Soc 2012, 134 (23), 9812-9.
84. Raoof, J.-B.; Ojani, R.; Abdi, S.; Hosseini, S. R., Highly improved electrooxidation of formaldehyde on nickel/poly (o-toluidine)/Triton X-100 film modified carbon nanotube paste electrode. International Journal of Hydrogen Energy 2012, 37 (3), 2137-2146.
85. Yeo, B. S.; Bell, A. T., In Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen. The Journal of Physical Chemistry C 2012, 116 (15), 8394-8400.
86. Zhang, C.; Liu, F.; Zhai, Y.; Ariga, H.; Yi, N.; Liu, Y.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H., Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew Chem Int Ed Engl 2012, 51 (38), 9628-32.
87. Maksymovych, P.; Voznyy, O.; Dougherty, D. B.; Sorescu, D. C.; Yates, J. T., Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Progress in Surface Science 2010, 85 (5-8), 206-240.
88. Rodriguez, P.; Garcia-Araez, N.; Koper, M. T., Self-promotion mechanism for CO electrooxidation on gold. Phys Chem Chem Phys 2010, 12 (32), 9373-80.
89. Alexander, A. M.; Hargreaves, J. S., Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys. Chem Soc Rev 2010, 39 (11), 4388-401.
90. Strbac, S.; Avramov Ivic, M., Oxidation of formaldehyde and ethanol on Au(111) and Au(111) modified by spontaneously deposited Ru in sulfuric acid solution. Electrochimica Acta 2009, 54 (23), 5408-5412.
91. Grde?, M.; Klimek, K.; Rogulski, Z., A quartz crystal microbalance study on oxidation of a cobalt electrode in an alkaline solution. Electrochemistry Communications 2009, 11 (2), 499-503.
92. Sato, K.; Yoshimoto, S.; Inukai, J.; Itaya, K., Effect of sulfuric acid concentration on the structure of sulfate adlayer on Au(111) electrode. Electrochemistry Communications 2006, 8 (5), 725-730.
93. Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M., Tuning reaction rates by lateral strain in a palladium monolayer. Angew Chem Int Ed Engl 2005, 44 (14), 2080-4.
94. Zhang, T.; Liu, Z. P.; Driver, S. M.; Pratt, S. J.; Jenkins, S. J.; King, D. A., Stabilizing CO on Au with NO2: electronegative species as promoters on coinage metals? Phys Rev Lett 2005, 95 (26), 266102.
95. Allongue, P.; Cagnon, L.; Gomes, C.; Gundel, A.; Costa, V., Electrodeposition of Co and Ni/Au(111) ultrathin layers. Part I: nucleation and growth mechanisms from in situ STM. Surface Science 2004, 557 (1-3), 41-56.
96. Machet, A.; Galtayries, A.; Zanna, S.; Klein, L.; Maurice, V.; Jolivet, P.; Foucault, M.; Combrade, P.; Scott, P.; Marcus, P., XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy. Electrochimica Acta 2004, 49 (22-23), 3957-3964.
97. Cabello, G.; Davoglio, R. A.; Hartl, F. W.; Marco, J. F.; Pereira, E. C.; Biaggio, S. R.; Varela, H.; Cuesta, A., Microwave-Assisted Synthesis of Pt-Au Nanoparticles with Enhanced Electrocatalytic Activity for the Oxidation of Formic Acid. Electrochimica Acta 2017, 224, 56-63.
98. Potzelberger, I.; Mardare, C. C.; Burgstaller, W.; Hassel, A. W., Maximum electrocatalytic oxidation performance for formaldehyde in a combinatorial copper-palladium thin film library. Applied Catalysis A: General 2016, 525, 110-118.
99. Gu, J. Y.; Cai, Z. F.; Wang, D.; Wan, L. J., Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy. ACS Nano 2016, 10 (9), 8746-50.
100. Hulsken, B.; Van Hameren, R.; Gerritsen, J. W.; Khoury, T.; Thordarson, P.; Crossley, M. J.; Rowan, A. E.; Nolte, R. J.; Elemans, J. A.; Speller, S., Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface. Nat Nanotechnol 2007, 2 (5), 285-9.
101. Niu, W.; Li, L.; Liu, X.; Wang, N.; Liu, J.; Zhou, W.; Tang, Z.; Chen, S., Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. J Am Chem Soc 2015, 137 (16), 5555-62.
102. Ramar, A.; Saraswathi, R.; Rajkumar, M.; Chen, S.-M., Influence of Poly(N-vinylcarbazole) as a Photoanode Component in Enhancing the Performance of a Dye-Sensitized Solar Cell. The Journal of Physical Chemistry C 2015, 119 (42), 23830-23838.
指導教授 姚學麟 審核日期 2018-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明