博碩士論文 105324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.137.171.1
姓名 郭瑋汝(Wei-Ru Guo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 光陽極在可見光下進行醇類選擇性氧化的應用
(Photoanode Assisted Visible-light-driven Selective Oxidation of Alcohol)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光催生物質選擇性氧化的過程,利用了豐富的太陽光生產高經濟價值的產物,是一道節省能源並對環境友善的製程。我們嘗試開發吸收可見光的光陽極應用在醇類的選擇性氧化上,所選定的材料為BiVO4,本研究首先著重在改善BiVO4光陽極,探討了三種方法對光電流及穩定性提升的情形,第一個方法是預想透過鹼液熱處理合成Bi2O3/BiVO4 p-n junction,雖然沒有成功合出此結構,但在1.23 V vs. RHE下光電流仍提升了29%;第二個方法為裝載MnOx共觸媒,成功提升了低偏壓區的光電流,但高偏壓區的光電流卻出現被抑制的情形,代表共觸媒的裝載能夠促進反應動力學,但也存在界面的問題需要克服;第三個方法則是塗佈TiO2保護層,在1.23 V vs. RHE下光電流提升了15%,而TiO2/BiVO4的穩定性則比前述兩個方法為佳。我們也透過在未添加或添加犧牲試劑的電解液中量測IPCE,個別探討BVO4光陽極三個部份的效率值,分別為吸光效率(ηabs)、光生電子─電洞對分離效率(ηbulk)以及半導體/電解液界面電荷轉移效率(ηsurf)。
摘要(英) The process of photocatalytically selective oxidation of biomass, which is eco-friendly and energy saving, harvests abundant sunlight to produce high value-added chemicals. We aim to develop a photoanode using BiVO4 as target material to absorb visible light in application of selective oxidation of alcohols. This study first focus on improving BiVO4 photoanode, and discuss three methods for improving photocurrent densities and stability. First, we attempt to fabricate Bi2O3/BiVO4 p-n junction through an alkaline thermal treatment. Although Bi2O3 phase wasn’t observed , the photocurrent densities still raised by 29% at 1.23 V vs. RHE compared with that of pristine BiVO4. Second, the enhancement of photocurrent densities in the low bias region was attained during loading MnOx cocatalyst on BiVO4 photoanode surface, but the photocurrent densities in the high bias region was suppressed. This result indicated that loading cocatalyst can promote the reaction kinetics, but charge recombination might happen between the interfaces. Last, coating crystalline TiO2 as a protection layer enhanced the photocurrent density by 15% at 1.23 V vs. RHE. And TiO2/BiVO4 photoanode dominated stability than aforementioned photoanodes. In addition, we calculated IPCE of BiVO4 photoanode with or without sacrificial reagent in electrolyte which is capable of measurement of absorption efficiency (ηabs), electron-hole separation efficiency (ηbulk) and semiconductor/electrolyte interface charge transfer efficiency (ηsurf) of BiVO4 photoanode, respectively.
關鍵字(中) ★ 光觸媒
★ 光電化學系統
★ 生質物
★ 太陽光─化學能轉換
★ 選擇性氧化反應
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章、 緒論 1
1-1 前言 1
1-2 光觸媒發展 3
1-3 研究動機 4
第二章、 文獻回顧 6
2-1 半導體光觸媒 6
2-1-1 半導體性質 6
2-1-2 半導體與電解液界面之平衡 8
2-2 光電化學分解水 10
2-3 光電效率 12
2-4 BiVO4光觸媒 13
2-4-1 BiVO4的基本性質 13
2-4-2 BiVO4的優缺點探討 15
2-4-3 BiVO4效率改進的方法 16
2-4-3-1 提升反應動力學 16
2-4-3-2 提升電子遷移率 17
2-5 光催選擇性氧化 18
第三章、 研究方法 21
3-1 實驗藥品 21
3-2 實驗儀器 23
3-3 實驗步驟 26
3-3-1 光陽極製備 26
3-3-1-1 BiVO4製備 26
3-3-1-2 BiVO4經鹼液熱處理 27
3-3-1-3 MnOx/BiVO4製備 27
3-3-1-4 TiO2/BiVO4製備 27
3-3-2 光電化學量測 28
3-3-3 醇類氧化 29
第四章、 結果與討論 30
4-1 BiVO4光陽極 30
4-1-1 基本性質分析 30
4-1-2 電化學分析 36
4-1-3 光電效率之探討 39
4-2 經鹼液熱處理之BiVO4 42
4-2-1 基本性質分析 42
4-2-2 電化學分析 44
4-3 MnOx/BiVO4光陽極 47
4-3-1 基本性質分析 47
4-3-2 電化學分析 48
4-4 TiO2/BiVO4光陽極 52
4-4-1 基本性質分析 52
4-4-2 電化學分析 53
4-5 醇類氧化 57
第五章、 結論 60
第六章、 未來展望 61
參考文獻 62
附錄 67
參考文獻 1. K. Zweibel, J. Mason and V. Fthenakis, Scientific American, 2008, 298, 64-73.
2. R. v. d. Krol and M. Gratzel, Photoelectrochemical Hydrogen Production, Springer New York Dordrecht Heidelberg London, 2012.
3. S. Ward, AgroCycle ‘circular economy’ project aims to reduce or re-use agri-food waste. http://www.engineersjournal.ie/2016/08/09/ucd-engineers-lead-e8-million-agrocycle-circular-economy-project/.
4. 陳明君, 生質材料發展概況與應用趨勢. https://www.materialsnet.com.tw/DocView.aspx?id=24686.
5. 黃彥禎, 工業材料雜誌, 2018, 376.
6. X. Chen, Z. Zhang, L. Chi, A. K. Nair, W. Shangguan and Z. Jiang, Nano-Micro Letters, 2016, 8, 1-12.
7. C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang and J. Tang, Chemical Society Reviews, 2017, 46, 4645-4660.
8. J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu and R. S. Varma, Chemical Reviews, 2017, 117, 1445-1514.
9. M. Arjmand, Nitrogen-Doped Carbon Nanotube/Polymer Nanocomposites Towards Thermoelectric Applications, IntechOpen, 2016.
10. K. Rajeshwar, in Encyclopedia of Electrochemistry, 2007.
11. 吳季珍, 科學發展, 2015, 508, 28.
12. 崔曉莉, 化學通報, 2017, 80, 1160.
13. A. Fujishima and K. Honda, Nature, 1972, 238, 37.
14. G. Wang, Y. Ling, H. Wang, L. Xihong and Y. Li, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 35-51.
15. Z. Chen, H. N. Dinh and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, Springer New York Heidelberg Dordrecht London, 2013.
16. J. H. Kim, J. W. Jang, H. J. Kang, G. Magesh, J. Y. Kim, J. H. Kim, J. Lee and J. S. Lee, Journal of Catalysis, 2014, 317, 126-134.
17. D. K. Zhong, S. Choi and D. R. Gamelin, Journal of the American Chemical Society, 2011, 133, 18370-18377.
18. J. H. Baek, B. J. Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho and H. S. Jung, ACS Applied Materials & Interfaces, 2017, 9, 1479-1487.
19. A. Loiudice, J. K. Cooper, L. H. Hess, T. M. Mattox, I. D. Sharp and R. Buonsanti, Nano Letters, 2015, 15, 7347-7354.
20. B.-Y. Cheng, J.-S. Yang, H.-W. Cho and J.-J. Wu, ACS Applied Materials & Interfaces, 2016, 8, 20032-20039.
21. V. Nair, C. L. Perkins, Q. Lin and M. Law, Energy & Environmental Science, 2016, 9, 1412-1429.
22. Y. Park, K. J. McDonald and K.-S. Choi, Chemical Society Reviews, 2013, 42, 2321-2337.
23. A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim and S.-H. Wei, Chemistry of Materials, 2009, 21, 547-551.
24. J. K. Cooper, S. Gul, F. M. Toma, L. Chen, Y.-S. Liu, J. Guo, J. W. Ager, J. Yano and I. D. Sharp, The Journal of Physical Chemistry C, 2015, 119, 2969-2974.
25. S. Byun, G. Jung, S.-Y. Moon, B. Kim, J. Y. Park, S. Jeon, S.-W. Nam and B. Shin, Nano Energy, 2018, 43, 244-252.
26. K. Tolod, S. Hernandez and N. Russo, Catalysts, 2017, 7.
27. H. L. Tan, R. Amal and Y. H. Ng, Journal of Materials Chemistry A, 2017, 5, 16498-16521.
28. F. M. Toma, J. K. Cooper, V. Kunzelmann, M. T. McDowell, J. Yu, D. M. Larson, N. J. Borys, C. Abelyan, J. W. Beeman, K. M. Yu, J. Yang, L. Chen, M. R. Shaner, J. Spurgeon, F. A. Houle, K. A. Persson and I. D. Sharp, Nature Communications, 2016, 7, 12012.
29. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, Journal of Materials Chemistry A, 2015, 3, 2485-2534.
30. S. Bai, W. Yin, L. Wang, Z. Li and Y. Xiong, RSC Advances, 2016, 6, 57446-57463.
31. X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim and J. H. Park, Nature Communications, 2014, 5, 4775.
32. S. S. Kalanur, I.-H. Yoo, J. Park and H. Seo, Journal of Materials Chemistry A, 2017, 5, 1455-1461.
33. S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner and A. M. Herring, Energy & Environmental Science, 2011, 4, 5028-5034.
34. Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo and T. Kitamori, Scientific Reports, 2015, 5, 11141.
35. T. W. Kim and K.-S. Choi, Science, 2014, DOI: 10.1126/science.1246913.
36. Y. Wu, J. Wang, Y. Huang, Y. Wei, Z. Sun, X. Zheng, C. Zhang, N. Zhou, L. Fan and J. Wu, Journal of Semiconductors, 2016, 37.
37. G. Palmisano, E. Garcia-Lopez, G. Marci, V. Loddo, S. Yurdakal, V. Augugliaro and L. Palmisano, Chemical Communications, 2010, 46, 7074-7089.
38. J. C. Colmenares and R. Luque, Chemical Society Reviews, 2014, 43, 765-778.
39. R. J. Highet and W. C. Wildman, Journal of the American Chemical Society, 1955, 77, 4399-4401.
40. G. Elmaci, D. Ozer and B. Zumreoglu-Karan, Catalysis Communications, 2017, 89, 56-59.
41. Z. Wu, J. Wang, Z. Zhou and G. Zhao, J. Mater. Chem. A, 2017, 5, 12407-12415.
42. J. A. Seabold and K.-S. Choi, Journal of the American Chemical Society, 2012, 134, 2186-2192.
43. D. K. Lee and K.-S. Choi, Nature Energy, 2018, 3, 53-60.
44. V.-I. Merupo, S. Velumani, K. Ordon, N. Errien, J. Szade and A.-H. Kassiba, CrystEngComm, 2015, 17, 3366-3375.
45. C. Regmi, Y. K. Kshetri, T.-H. Kim, R. P. Pandey and S. W. Lee, Molecular Catalysis, 2017, 432, 220-231.
46. M. V. Malashchonak, E. A. Streltsov, D. A. Kuliomin, A. I. Kulak and A. V. Mazanik, Materials Chemistry and Physics, 2017, 201, 189-193.
47. X. Wan, F. Niu, J. Su and L. Guo, Physical Chemistry Chemical Physics, 2016, 18, 31803-31810.
48. O. Monfort, L.-C. Pop, S. Sfaelou, T. Plecenik, T. Roch, V. Dracopoulos, E. Stathatos, G. Plesch and P. Lianos, Chemical Engineering Journal, 2016, 286, 91-97.
49. S. Hernandez, G. Gerardi, K. Bejtka, A. Fina and N. Russo, Applied Catalysis B: Environmental, 2016, 190, 66-74.
50. Y. Ma, S. R. Pendlebury, A. Reynal, F. Le Formal and J. R. Durrant, Chemical Science, 2014, 5, 2964-2973.
51. Y. Liang and J. Messinger, Physical Chemistry Chemical Physics, 2014, 16, 12014-12020.
52. J. Jiang and A. Kucernak, Electrochimica Acta, 2002, 47, 2381-2386.
53. B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger and I. Chorkendorff, The Journal of Physical Chemistry C, 2015, 119, 15019-15027.
54. K. Kawamura, T. Yasuda, T. Hatanaka, K. Hamahiga, N. Matsuda, M. Ueshima and K. Nakai, Chemical Engineering Journal, 2016, 285, 49-56.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明