博碩士論文 105324070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.14.6.194
姓名 郭宗義(Tsung-Yi Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用奈米球微影術製備可撓曲陽極氧化鋁奈米模板之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技進步,近年來電子元件朝輕薄短小的開發導向,當元件薄至一定的奈米尺度後,使它帶有可撓曲性,成為近年來發展的重要目標之一,例如:智慧型手錶、薄型電子顯示器等等。為了增進可撓曲電子元件之性能表現,我們將嘗試結合陽極氧化鋁模板技術製備零維及一維之奈米結構。而製造具大面積規則有序的奈米孔陣列的薄型陽極氧化鋁模板,目前已經開發出多種技術,例如:PMMA模板輔助法、離子束光刻法以及模板奈米壓印法等等。然而由於模板輔助法的步驟繁瑣耗時長、離子光刻法無法製備大面積規則有序的陽極氧化鋁膜板以及製備奈米模板之成本昂貴,使得它們難以有廣泛的應用。在本研究中,我們提出利用低成本且能快速製備的奈米球微影術壓印圖案的方法,並在可撓曲基板上製造薄型陽極氧化鋁模板。我們透過預先壓印出規則有序之凹痕及一步驟陽極氧化處理,成功製備出面積約為1 x 1cm2 之規則有序且準直的薄型陽極氧化鋁膜板。
摘要(英) In recent years, the electronic components have been oriented towards light and thin development with the advancement of science and technology, When the components are thin to a nanoscale, they get with flexibility, which has become one of the important developed goals. We attempt to fabricate zero-dimensional and one-dimensional nanostructures in combination with anodized aluminum template technology in order to enhance the performance of the flexible electronic component. The variety of techniques have been developed for the fabrication of thin anodic aluminum oxide template, such as the PMMA template-based method, the electron beam lithography method, and the nanoimprint template method. However, those methods are difficult to use in a wide range of applications, due to the cumbersome and the time-consuming steps, the inability of ion-lithography to fabricate large-area regular-ordered anodic aluminum oxide and the high cost of preparing nanoimprinted template. In this study, we propose a method of nanosphere lithography and fabricate the thin anodic aluminum oxide template on the flexible substrate. We have successfully prepared regular ordered and collimated thin anodized aluminum oxide template with an area of approximately 1 x 1 cm2 by pre-imprinting and one-step anodizing.
關鍵字(中) ★ 陽極氧化鋁 關鍵字(英)
論文目次 第一章 前言及文獻回顧1
1-1 前言1
1-2陽極氧化鋁模板2
1-2-1陽極氧化鋁膜成長機制3
1-2-2陽極氧化鋁膜成長控制變因4
1-2-3 陽極氧化鋁模板規則化孔洞製程5
1-3 薄型陽極氧化鋁模板規則化孔洞製程6
1-4 超薄可撓曲基板7
1-5研究動機及目標8
第二章 實驗步驟及實驗設備10
2-1 實驗步驟10
2-1-1 透明基材試片之前處理10
2-1-2 自組裝奈米球陣列模板製備10
2-1-3 鈦薄膜及鋁薄膜之濺鍍沉積11
2-1-4 轉附金屬薄膜至可撓式基材11
2-1-5 舉離奈米球及製備試片電極11
2-1-6 製備可繞曲且規則有序之陽極氧化鋁模板12
2-2 電化學沉積法製備一維銅奈米線13
2-3 實驗設備13
2-3-1 真空濺鍍系統13
2-3-2 陽極氧化鋁膜製備系統14
2-3-3 掃描式電子顯微鏡14
2-3-4 可見光-近紅外光光譜儀15
2-3-5 X光結晶繞射分析15
2-3-6 原子力電子顯微鏡16
第三章 結果與討論17
3-1 在奈米球模板上沉積鋁薄膜結構與分析17
3-2 在可繞曲基板上製備規則有序之陽極氧化鋁膜結構19
3-2-1 操作電壓之影響分析19
3-2-2 陽極氧化鋁生成速率分析21
3-3 可見光-紅外光光譜量測23
3-3-1 不同操作電壓製備陽極氧化鋁膜之可見光-紅外光波段穿透度量測23
3-3-2 不同氧化鋁薄膜厚度之可見光-紅外光波段穿透度量測24
3-4 奈米結構製備25
第四章 結論及未來展望26
4-1 結論26
4-2 未來展望26
參考文獻28
表目錄36
圖目錄38
參考文獻 [1] S.H. Liao, H.J. Jhuo, Y.S. Cheng, and S.A. Chen. “Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance,” Adv. Mater. 25 (2013) 4766.
[2] J.Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels. “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9 (2014) 891.
[3] R. Ghosh Chaudhuri and S. Paria. “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112 (2012) 2373.
[4] Y. Ding, Z. Jiang, K. Saha, C.S. Kim, S.T. Kim, R.F. Landis, and V.M. Rotello. “Gold nanoparticles for nucleic acid delivery,” Mol. Ther. 22 (2014) 1075.
[5] G. Shen and P. Guyot-Sionnest. “HgS and HgS/CdS colloidal quantum dots with infrarediIntraband transitions and emergence of a surface plasmon,” J. Phys. Chem. C. 120 (2016) 11744.
[6] W. Wang, Y. Xie, Y. Wang, H. Du, C. Xia, and F. Tian. “Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays,” Microchimica. Acta. 181 (2013) 381.
[7] L. Romano, J. Vila-Comamala, K. Jefimovs, and M. Stampanoni. “Effect of isopropanol on gold assisted chemical etching of silicon microstructures,” Microelectron. Eng. 177 (2017) 59.
[8] M. Najafi, P. Amjadi, and Z. Alemipour. “Fabrication and magnetic properties of ordered Co100?xPbx nanowire arrays electrodeposited in AAO templates: effects of annealing temperature and frequency,” J. Mater. Res. 32 (2017) 1177.
[9] C.-L. Liu and H.-L. Chen. “Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels,” Soft Matter 14 (2018) 5461.
[10] F. Venturi, G.C. Gazzadi, A.H. Tavabi, A. Rota, R.E. Dunin-Borkowski, and S. Frabboni. “Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition.,” Beilstein J. Nanotechnol. 9 (2018) 1040.
[11] K. Zuzek Rozman, F. Rhein, U. Wolff, and V. Neu. “Single-vortex magnetization distribution and its reversal behaviour in Co–Pt nanotubes,” Acta. Mater. 81 (2014) 469.
[12] J.-G. Zhu, Y. Zheng, and G.A. Prinz. “Ultrahigh density vertical magnetoresistive random access memory ,” J. Appl. Phys. 87 (2000) 6668.
[13] H.S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, and M.-J. Tsai. “Metal–Oxide RRAM,” Proc. IEEE 100 (2012) 1951.
[14] J.S. Meena, S.M. Sze, U. Chand, and T.Y. Tseng. “Overview of emerging nonvolatile memory technologies,” Nanoscale Res. Lett. 9 (2014) 526.
[15] T. Shimizu, Y. Sumita, F. Inoue, T. Minokuchi, S. Shingubara, S. Otsuka, and K. Takase. “Fabrication of an array of Ni/NiO nanowire-ReRAM using AAO template on Si,” e-J. Surf. Sci. and Nanotechnol. 10 (2012) 476.
[16] U.-B. Han and J.-S. Lee. “Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory,” Sci. Rep. 6 (2016) 25537.
[17] A. Birner, U. Gruning, S. Ottow, A. Schneider, F. Muller, V. Lehmann, H. Foll, and U. Gosele. “Macroporous silicon: a two?dimensional photonic bandgap material suitable for the near?infrared spectral range,” Phys. Status Solidi 165 (1998) 111.
[18] W. Han, P. Hou, S. Sadaf, H. Schafer, L. Walder, and M. Steinhart. “Ordered topographically patterned silicon by insect-inspired capillary submicron stamping,” ACS Appl. Mater. 10 (2018) 7451.
[19] S.B. Tang, M.O. Lai, and L. Lu. “Electrochemical studies of low-temperature processed nano-crystalline LiMn2O4 thin film cathode at 55°C,” J. Power Sources. 164 (2007) 372.
[20] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck. “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature 359 (1992) 710.
[21] H. Kang, Y.W. Jun, J.I. Park, K.B. Lee, and J. Cheon. “Synthesis of porous palladium superlattice nanoballs and nanowires,” Chem. Mater. 12 (2000) 3530.
[22] A. Subramania, N.T. Kalyana Sundaram, A.R. Sathiya Priya, and G. Vijaya Kumar. “Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery,” J. Membrane Sci. 294 (2007) 8.
[23] W. Lee, R. Ji, U. Gosele, and K. Nielsch. “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5 (2006) 741.
[24] J. Dai, J. Singh, and N. Yamamoto. “The effect of nano pore size and porosity on deformation behaviors of anodic aluminum oxide membranes,” SAMPE 2017, Conf. Exhib. (2017)
[25] O. Jessensky, F. Muller, and U. Gosele. “Self-organized formation of hexagonal pore arrays in anodic alumina,” J. Electrochem. Soci. 145 (1998) 3735.
[26] G.E. Thompson. “Porous anodic alumina: fabrication, characterization and applications,” Thin Solid Films 297 (1997) 192.
[27] F. Li, L. Zhang, and R.M. Metzger. “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater. 10 (1998) 2470.
[28] K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gosele. “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano. 2 (2008) 302.
[29] T. Yanagishita and H. Masuda. “Facile preparation of porous alumina through-hole masks for sputtering by two-layer anodization,” AIP Adv. 6 (2016) 85108.
[30] L.P. Wang, G. Li, X.-h. Liu, S.-y. Xia, and H.-b. Jia. “Constitution of anodizing current and effects on the growth of porous anodic alumina,” J. Electrochem. Soc. 164 (2017) 117.
[31] A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, and W.Z. Misiolek. “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” J. Membrance Sci. 319 (2008) 192.
[32] C. Ottone, M. Laurenti, K. Bejtka, A. Sanginario, and V. Cauda. “The effects of the film thickness and roughness in the anodization process of very thin aluminum films,” J. Mater. Sci. Nanotechnol. 1 (2014) 2348.
[33] H. Masuda and K. Fukuda. “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268 (1995) 1466.
[34] N. Ta?alt?n, S. Ozturk, N. K?l?nc, H. Yuzer, and Z.Z. Ozturk. “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys. 95 (2009) 781.
[35] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura. “Square and triangular nanohole array architectures in anodic alumina. Advanced materials,” Adv. Mater. 13 (2001) 189.
[36] C.Y. Liu, A. Datta, and Y.L. Wang. “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. 78 (2001) 120.
[37] Z. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, and A. Javey. “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8 (2009) 648.
[38] P.-H. Lo, G.-L. Luo, C.-C. Lee, and W. Fang. “Nanoporous anodic aluminum oxide as a promising material for the electrostatically-controlled thin film interference filter,” J. Micromech. Microeng. 25 (2015) 25001.
[39] C. Hong, T.T. Tang, R.P. Pan, and W. Fang. “Nanoporous anodic aluminum oxide (np-AAO) alignment layer on PET/ITO substrate for flexible liquid crystal display application,” IEEE. 24th Int. Conf. 24 (2011) 107.
[40] K. Sharma, D. Routkevitch, N. Varaksa, and S.M. George. “Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes,” J. Vacuum Sci. Technol. 34 (2016) 146.
[41] A.S. Yersak, K. Sharma, J.M. Wallas, A.A. Dameron, X. Li, Y. Yang, K.E. Hurst, C. Ban, R.C. Tenent, and S.M. George. “Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes,” J. Vacuum Sci. Technol. 36 (2018) 123.
[42] C. Hong, L. Chu, W. Lai, A.-S. Chiang, and W. Fang. “Implementation of a new capacitive touch sensor using the nanoporous anodic aluminum oxide (np-AAO) structure,” IEEE. Sens. J. 11 (2011) 3409.
[43] T. Kondo, T. Yanagishita, and H. Masuda. “Functional optical devices based on highly ordered metal nanostructures obtained using anodic porous alumina,” ECS Trans. 69 (2015) 235.
[44] Y. Lv. “Research progress in formation mechanism of anodizing aluminum oxide,” IOP Conf. Ser.: Earth Environ. Sci. 100 (2017) 12022.
[45] T. Yanagishita, M. Kawamoto, K. Nishio, and H. Masuda. “Fabrication of monodisperse particles by nanoimprinting using anodic porous alumina molds,” J. Vacuum Sci. Technol. 32 (2014) 11802.
[46] C.T. Sousa, D.C. Leitao, M.P. Proenca, J. Ventura, A.M. Pereira, and J.P. Araujo. “Nanoporous alumina as templates for multifunctional applications,” Appl. Phys. Rev. 1 (2014) 31102.
[47] E. Hourdakis and A.G. Nassiopoulou. “Method for Al thin film surface nanostructuring using Al imprinting and anodic oxidation: application to a high capacitance density metal-insulator-metal capacitor,” Thin Solid Films 621 (2017) 36.
[48] A. Purwidyantri and C.-S. Lai. “Au-nanoarray by nanosphere lithography sensors for staphylococcus aureus 16S rRNA,” IEEE 16th Int. Conf. (2016) 401.
[49] S. Kim, S. Bowden, and C.B. Honsberg. “Fabrication of nanopillar structure by silica nanosphere lithography and passivation with wet chemical oxidation cleaning.,” IEEE Photovoltaic Spec. Conf. (2016) 2922.
[50] X. Xu, Q. Yang, N. Wattanatorn, C. Zhao, N. Chiang, S.J. Jonas, and P.S. Weiss. “Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures,” ACS Nano. 11 (2017) 10384.
[51] L. Li, Y. Fang, C. Xu, Y. Zhao, K. Wu, C. Limburg, P. Jiang, and K.J. Ziegler. “Controlling the geometries of Si nanowires through tunable nanosphere lithography,” ACS Appl. Mater. Interface. 9 (2017) 7368.
[52] J.C. Hulteen and R.P.V. Duyne. “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vacuum Sci. Technol. 13 (1995) 1553.
[53] Y. Matsui, K. Nishio, and H. Masuda. “Highly ordered anodic porous alumina with 13-nm hole intervals using a 2D array of monodisperse nanoparticles as a template,” Small 2 (2006) 522.
[54] A.L. Lipson, D.J. Comstock, and M.C. Hersam. “Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization,” Small 5 (2009) 2807.
[55] S. Gupta, W.T. Navaraj, L. Lorenzelli, and R. Dahiya. “Ultra-thin chips for high-performance flexible electronics,” NPJ Flexible Electron. 2 (2018)
[56] P. Simon and Y. Gogotsi. “Materials for electrochemical capacitors,” Nat. Mater. 7 (2008) 845.
[57] P. Guo, Y. Shen, Y. Song, J. Ma, Y.-H. Lin, and C.-W. Nan. “Self-etching Ni–Co hydroxides@Ni–Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors,” Rare Met. 36 (2017) 691.
[58] H.P. Mahabaduge, W.L. Rance, J.M. Burst, M.O. Reese, D.M. Meysing, C.A. Wolden, J. Li, J.D. Beach, T.A. Gessert, W.K. Metzger, S. Garner, and T.M. Barnes. “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106 (2015)
[59] M.M. Tavakoli, K.H. Tsui, Q. Zhang, J. He, Y. Yao, and D. Li.“Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ,” ACS Nano. 9 (2015) 10287.
[60] M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya. “An ultra-lightweight design for imperceptible plastic electronics,” Nature 499 (2013) 458.
[61] A.P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele. “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84 (1998) 6023.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明