博碩士論文 100683009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:18.119.121.170
姓名 林筵捷(Yen-Chieh Lin)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 電離層電漿密度數值模擬與研究
(NUMERICAL MODELING OF IONOSPHERE PLASMA CONCENTRATION AND RELEVANT RESEARCHES)
相關論文
★ 利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係★ 利用中壢特高頻雷達對流星現象進行觀測與應用
★ 台灣北部地區大氣折射率之分析與應用★ 中華衛星一號Ka波段標識訊號大氣衰減之量測研究
★ 利用華衛一號通訊實驗酬載Ka波段標識訊號對閃爍效應之研究★ 利用中立VHF雷達對大氣及降水回波特性之研究
★ 台灣地區Ka波段大氣傳播通道之研究★ 低軌道Ka波段人造衛星標識訊號特性之研究
★ 電離層散塊E層型態二不規則體之研究★ 中華衛星一號Ka波段傳播實驗診斷分析
★ 中華衛星一號低軌道衛星 Ka 波段雨衰減實驗與模型建立★ 特高頻雷達對空中降水粒子大小與回波功 率關係之研究
★ 低軌道衛星Ka波段閃爍現象之研究★ Ka波段雨衰減之分析與研究
★ 電離層E層場列不規則體移行速度之估算研究★ 臺灣地區蒸發導管之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 模擬電離層電漿濃度與動力傳輸行為的數值模式是一種可提供一個適應性研究 平台,使得在研究電離層現象時更為有效率與便利的方法。譬如在研究小尺度不規 則體的產生機制,電離層主要電漿成份化學反應式與其係數,光化學反應相關研究, 流星燒蝕過程所產生金屬粒子的數量與成份推估等等。在此研究中,我們致力於開 發中低緯度地區模擬電離層背景電漿濃度與層狀結構的數值理論模型,藉由數值求 解一個非線性剛性耦合偏微分代數方程系統來模擬電離層中 41 種主要離子成份與中 性成份的濃度隨高度與時間的變化。其解析度在高度方向上可達 0.2 公里,在時間解 析度上可達 30 秒。此理論數值模型的建立是基於前人對於電離層化學方程,光化學 反應,金屬粒子輸入方程,與動力傳輸的研究。儘管如此,在此研究中為了要更完 整的模擬電離層的背景環境,我們做了以下的努力:整理並採用主要大氣成分的高 解析度光離化/光吸收與分支離化比,採用 SDO-EVE 衛星任務所觀測的高解析度 的太陽光子通量,計算光電子效應對電離層的影響,並開發一個不使用濾波方法來 解非線性剛性耦合偏微分代數方程系統的演算法。我們也統整確定影響電離層中 41 種金屬與非金屬粒子的化學反應與它們的反應係數。這 41 種粒子種類包含 7 種非金 屬離子:O2+、NO+、O+(4S)、O+(2D)、O+(2P)、N2+、N+ 與 15 種金屬離子:Fe+、 Mg+、Na+等和 19 種金屬中性粒子:Fe, Mg, Na 等。利用如上敘述所建立的模型應 用在科學研究上,我們研究三種不同的光子通量模型並利用 AE-C 衛星觀測的離子 濃度來比較不同的光子通量模型對背景離子濃度的影響,我們也對光電子效應在電 漿層狀結構與背景電子濃度的影響做研究分析,最後利用此模型高解析度優勢且可 推估計算金屬離子的能力,我們模擬電離層四種層狀結構從發生到消逝的過程,並 對其特性做定性與定量的分析。
摘要(英) Ionosphere plasma concentration and dynamic transport numerical model is an alternative platform to carry out variety of researches such as irregularities, principal species chemistry, pho- tochemistry, and metallic mass input estimation, etc. Our efforts to develop a time-dependent theoretical ionosphere model in low and mid-latitude have been established and the model is so- called Mid-Latitude Ionosphere Layer Model (the MLIL model) which is capable of simulating time-varying density profiles of 41 major species in ionosphere with 30s temporal resolution and 0.2km spacial resolution by means of solving nonlinear stiff coupling Differential Algebraic Equa- tions (DAEs) system. The MLIL model is established on the basis of former researches of chemistry, atmosphere constituent photochemistry, quantity estimation of metallic species input to upper at- mosphere from meteoroids, and dynamic transport forces simulation. Nevertheless, in order to more comprehensively modeling reality of ionosphere environment, we have made following efforts to our MLIL model: organization/adoption of high-resolution photoionization/photoabsorption cross sections and branching ratios for major neutral gases, adoption of high-resolution solar flux measurements from SDO-EVE satellite missions, calculation of photoelectron impact, development of efficient solving algorithm for non-linear DAEs system without filter added (i.e. high-stability solving procedures), organization/identification of chemical reactions and their reaction rates be- tween 41 species in ionosphere region, where 41 species including 7 non-metallic ions: O+2 , NO+, O+(4S), O+(2D), O+(2P), N+2 , N+, 15 metallic ions: Fe+, Mg+, Na+, etc, 19 metallic neutrals: Fe, Mg, Na, etc. Overall, the new scientific finding includes investigation of three solar irradiance models, background density profiles compared with AE-C measurement, exploration of photoelec- tron impact on background ionosphere as well as on plasma layer structures, and ionospheric layer structures simulation and relevant researches.
關鍵字(中) ★ 電離層
★ 電漿
★ 數值模擬
★ 散塊E層
關鍵字(英) ★ Ionosphere
★ Plasma
★ Simualtion
★ Es
★ Sporadic E layer
★ Intermediate layer
論文目次 1 Introduction . . . . . . . . . . . . . . . 1
1.1 EssentialcharacteristicsoflayerstructuresinMLTregion . . . . . . . . . . . . . . . 3
1.2 Researchmotivations/dissertationobjectives....................... 5
2 Fundamentals of developing mid latitude ionosphere layer model 8
2.1 Introduction......................................... 8
2.2 Theoryofphoton-inducedionproductionrate...................... 10
2.2.1 Photoionizationproductionrate ......................... 11
2.2.2 Photoelectronproductionrate .......................... 12
2.2.3 Dissociativeionizationproductionrate...................... 14
2.3 Calculationsofproductionrates.............................. 14
2.3.1 Solarphotofluxmodels .............................. 15
2.3.2 Conversion of high-resolution cross sections into low-resolution . . . . . . . . 21
2.3.3 Branchingratios .................................. 24
2.3.4 Solarzenithangle ................................. 25
2.3.5 Theresultsofproductionrates .......................... 26
2.4 Chemicalreaction ..................................... 30
2.4.1 Nonmetallicionspeciesreactions......................... 32
2.4.2 Neutralspeciescalculation ............................ 38
2.4.3 Metallicionspeciesreactions ........................... 43
2.5 ThemotionofParticles .................................. 50
2.5.1 Themotionsofionparticles............................ 54
2.5.2 Themotionsofelectronparticles......................... 60
2.5.3 Theion’smotionwithambipolardiffusion.................... 61
2.5.4 Themotionsofneutralparticles ......................... 63
2.5.5 Theelaborateformofcontinuityequations ................... 64
2.6 Modelsimulationprocess ................................. 65
2.6.1 Iterative Method for estimating adequate initial values of ions and neutrals . 66
2.6.2 Advection-Diffusion-Reaction Model implemented with Strang Splitting Approach........................................ 67
2.6.3 Discretization:Finitedifferencemethod..................... 68
2.6.4 Boundary condition of partial differential equations . . . . . . . . . . . . . . . 69
2.6.5 The solving method : Numerical differentiation formulas . . . . . . . . . . . . 72
2.6.6 SavitzkyGolayfilter................................ 75
2.6.7 ParallelcomputinginMatlab........................... 75
2.6.8 Theothersmodelsinputs ............................. 76
3 Model simulations of background ion and electron density profiles in ionospheric E and F regions without considering transport effects 81
3.1 Introduction......................................... 82
3.2 ModelSimulationprocess ................................. 84
3.3 Results............................................ 85
3.4 Discussion.......................................... 99
3.5 Conclusions.........................................104
4 Exploration of ionospheric layer structures with variation of transport effects 106
4.1 Theory and mechanism of forming ionospheric sporadic E-layer, Intermediate layer, thermosphericmetallayersandneutralmetallayers. . . . . . . . . . . . . . . . . . . 106
4.2 Qualitative and quantitative analysis of density profile for various cases. . . . . . . . 113
4.2.1 Analysis of densities variation in various circumstance of dynamic transports. 120
4.2.2 Analysis of densities variation in three different collision frequency. . . . . . . 133
4.2.3 Thephotoelectroneffectsonlayerstructure.. . . . . . . . . . . . . . . . . . . 137
4.3 Discussion..........................................140
4.3.1 The exact occurrence altitude of Sporadic E layer and Intermediate layer. . . 140
4.4 Conclusion .........................................144
5 Modeled plasma layer structures compared with Sounding Rocket measurements 147
5.1 Simulationprocess .....................................147
5.1.1 Chemistry in ionosphere regarding to non-metallic and metallic ions . . . . . 148
5.1.2 Motionsofionsandneutralparticles.......................152
5.1.3 Modelsimulationmethods.............................154
5.1.4 Dynamictransportinputsfromothermodelsources . . . . . . . . . . . . . . 155
5.2 Soundingrocketmeasurements ..............................157
5.2.1 NASAWallopssoundingrocketmission .....................158
5.2.2 Development and Application of Ionospheric Ion Probs Onboard Sounding Rockets(TAIWANsoundingrocketmission-5) . . . . . . . . . . . . . . . . . . 159
5.2.3 In-situ Measurements of Sub-orbital Space Environment and Plasma Irregu- larities in Taiwan Region(TAIWAN sounding rocket mission-9) . . . . . . . . 160
5.3 Comparisons ........................................161
5.3.1 TAIWANsoundingrocketmission-5 .......................161
5.3.2 TAIWANsoundingrocketmission-9 .......................165
5.3.3 NASAWallopssoundingrocketmission .....................168
5.4 Discussionandconclusion .................................174
6 Conclusions and future work 175 6.1 Conclusionsandmerits...................................175
6.2 Summaryofscientificfindings...............................176
6.3 Implicationandfuturework................................179
Bibliography 182
參考文獻 Ackerman, M. (1971), Ultraviolet solar radiation related to mesospheric processes, in Mesospheric models and related experiments, pp. 149–159, Springer.
Allen, M., J. I. Lunine, and Y. L. Yung (1984), The vertical distribution of ozone in the mesosphere and lower thermosphere, Journal of Geophysical Research: Atmospheres, 89(D3), 4841–4872.
Alpers, M., T. Blix, S. Kirkwood, D. Krankowsky, F. Lu ?bken, S. Lutz, and U. Zahn (1993), First simultaneous measurements of neutral and ionized iron densities in the upper mesosphere, Journal of Geophysical Research: Space Physics, 98(A1), 275–283.
Anicich, V. G. (1993), Evaluated bimolecular ionmolecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds, Journal of physical and chemical reference data, 22(6), 1469–1569.
Axford, W. I. (1963), The formation and vertical movement of dense ionized layers in the ionosphere due to neutral wind shears.
Bailey, S. M., T. N. Woods, C. A. Barth, S. C. Solomon, L. R. Canfield, and R. Korde (2000), Measurements of the solar soft Xray irradiance by the Student Nitric Oxide Explorer: First analysis and underflight calibrations, Journal of Geophysical Research: Space Physics, 105 (A12), 27,179–27,193.
Bailey, S. M., C. A. Barth, and S. C. Solomon (2002), A model of nitric oxide in the lower thermo- sphere, Journal of Geophysical Research: Space Physics, 107(A8).
Balan, N., Y. Otsuka, G. J. Bailey, and S. Fukao (1998), Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar, Journal of Geophysical Research: Space Physics, 103(A5), 9481–9495.
Banks, P. M., and G. Kockarts (1973), Aeronomy, Elsevier.
Barabash, V., A. Osepian, P. Dalin, and S. Kirkwood (2012), Electron density profiles in the quiet lower ionosphere based on the results of modeling and experimental data, in Annales Geophysicae, vol. 30, p. 1345, Copernicus GmbH.
Barth, C. A. (1990), Reference models for thermospheric NO, Advances in Space Research, 10(6), 103–115.
Barth, C. A. (1992), Nitric oxide in the lower thermosphere, Planetary and Space Science, 40(2), 315–336, doi:https://doi.org/10.1016/0032-0633(92)90067-X.
183 Barth, C. A., W. K. Tobiska, D. E. Siskind, and D. D. Cleary (1988), Solarterrestrial coupling:
Lowlatitude thermospheric nitric oxide, Geophysical Research Letters, 15(1), 92–94.
Bates, D. R. (1989), Theoretical considerations regarding some inelastic atomic collision processes of interest in aeronomy: Deactivation and charge transfer, Planetary and Space Science, 37(3), 363–368.
Batsanov, S. S. (2001), Van der Waals radii of elements, Inorganic materials, 37(9), 871–885.
Baulch, D. L., C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, T. Just, J. A. Kerr, T. Murrells, M. J. Pilling, and J. Troe (1994), Evaluated kinetic data for combustion modeling. Supplement I, Journal of physical and chemical reference data, 23(6), 847–848.
Bautista, M. A., P. Romano, and A. K. Pradhan (1998), Resonance-averaged photoionization cross sections for astrophysical models, The Astrophysical Journal Supplement Series, 118(1), 259.
Berrington, K. A., and P. G. Burke (1981), Effective collision strengths for forbidden transitions in eN and eO scattering, Planetary and Space Science, 29(3), 377–381.
Bhavnani, K. H., and R. P. Vancour (1991), Coordinate systems for space and geophysical appli- cations, Tech. rep.
Bishop, R. L. (2005), Sequential observations of the local neutral wind field structure associated withEregion plasma layers, Journal of Geophysical Research, 110 (A4), doi:10.1029/2004ja010686.
Bishop, R. L., and G. D. Earle (2003), Metallic ion transport associated with midlatitude interme- diate layer development, Journal of Geophysical Research: Space Physics, 108(A1).
Bondi, A. (1964), van der Waals volumes and radii, The Journal of physical chemistry, 68(3), 441–451.
Bones, D. L., J. M. C. Plane, and W. Feng (2015), Dissociative recombination of FeO+ with electrons: Implications for plasma layers in the ionosphere, The Journal of Physical Chemistry A, 120(9), 1369–1376.
Brasseur, G. P., and S. Solomon (2006), Aeronomy of the middle atmosphere: chemistry and physics of the stratosphere and mesosphere, vol. 32, Springer Science & Business Media.
Brown, T. L. (1973), The chemistry of metallic elements in the ionosphere and mesosphere, Chemical Reviews, 73(6), 645–667.
Buonsanto, M. J., P. G. Richards, W. K. Tobiska, S. C. Solomon, Y. Tung, and J. A. Fennelly (1995), Ionospheric electron densities calculated using different EUV flux models and cross sections: Comparison with radar data, Journal of Geophysical Research: Space Physics, 100 (A8), 14,569– 14,580.
Callis, L. B., M. Natarajan, and J. D. Lambeth (2002), Observed and calculated mesospheric NO, 19921997, Geophysical Research Letters, 29(2).
Carrasco, A. J., I. S. Batista, and M. A. Abdu (2007), Simulation of the sporadic E layer response to prereversal associated evening vertical electric field enhancement near dip equator, Journal of Geophysical Research: Space Physics, 112(A6).

184 Carter, L. N., and J. M. Forbes (1999), Global transport and localized layering of metallic ions in
the upper atmosphere, Annales Geophysicae, 17(2), 190–209, doi:10.1007/s00585-999-0190-6.
Chang, T., D. G. Torr, P. G. Richards, and S. C. Solomon (1993), Reevaluation of the O+ (P) reac- tion rate coefficients derived from Atmosphere Explorer C observations, Journal of Geophysical Research: Space Physics, 98(A9), 15,589–15,597.
Chapman, S. (1931), The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth, Proceedings of the Physical Society, 43(1), 26.
Chapman, S. (1951), Some phenomena of the upper atmosphere, Proceedings of the Physical Society. Section B, 64(10), 833.
Chau, J. L., R. F. Woodman, and F. Galindo (2007), Sporadic meteor sources as observed by the Jicamarca high-power large-aperture VHF radar, Icarus, 188(1), 162–174.
Chauhan, N. S. (1984), Simulation of ionosphere: a numerical technique, Mathematics and Com- puters in Simulation, 26(2), 117–121.
Chen, W. M., and R. D. Harris (1971), An ionospheric E-region nighttime model, Journal of Atmospheric and Terrestrial Physics, 33(8), 1193–1207.
Christakis, N., C. Haldoupis, Q. Zhou, and C. Meek (2009), Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo, Ann. Geophys, 27(3), 923–931.
Chu, X., and Z. Yu (2017), Formation mechanisms of neutral Fe layers in the thermosphere at Antarctica studied with a thermosphereionosphere Fe/Fe+ (TIFe) model, Journal of Geophysical Research: Space Physics.
Chu, Y.-H., C. Y. Wang, K. H. Wu, K. T. Chen, K. J. Tzeng, C.-L. Su, W. Feng, and J. M. C. Plane (2014), Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: Wind shear theory examination, Journal of Geophysical Research: Space Physics, 119(3), 2117–2136.
Clemesha, B. R. (1995), Sporadic neutral metal layers in the mesosphere and lower thermosphere, Journal of Atmospheric and Terrestrial Physics, 57(7), 725–736.
Constantinides, E. R., J. H. Black, A. Dalgarno, and J. H. Hoffman (1979), The photochemistry of N+ ions, Geophysical Research Letters, 6(7), 569–572.
Conway, R. R. (1988), Photoabsorption and Photoionization Cross Sections of O, O2, and N2 for Photoelectron Production Calculations: A Compilation of Recent Laboratory Measurements, Tech. rep.
Cox, R. M., and J. Plane (1998), An ionmolecule mechanism for the formation of neutral sporadic Na layers, Journal of Geophysical Research: Atmospheres (19842012), 103(D6), 6349–6359.
Cox, R. M., and J. M. C. Plane (1997), An experimental and theoretical study of the clustering reactions between Na+ ions and N 2, O 2 and CO 2, Journal of the Chemical Society, Faraday Transactions, 93(16), 2619–2629.
Cravens, T. E., and A. I. Stewart (1978), Global morphology of nitric oxide in the lower E region, Journal of Geophysical Research: Space Physics, 83(A6), 2446–2452.

Daire, S. E., J. M. C. Plane, S. D. Gamblin, P. Sold ?an, E. P. F. Lee, and T. G. Wright (2002), A theoretical study of the ligand-exchange reactions of Na+· X complexes (X= O, O 2, N 2, CO 2 and H 2 O): implications for the upper atmosphere, Journal of Atmospheric and Solar-Terrestrial Physics, 64(7), 863–870.
Dalgarno, A. (1979), AE Reaction Rate Data, Tech. rep.
Danilov, A. D., and U. A. Kalgin (1992), Seasonal and latitudinal variations of eddy diffusion coefficient in the mesosphere and lower thermosphere, Journal of Atmospheric and Terrestrial Physics, 54(11), 1481–1489.
Delgado, R., J. S. Friedman, J. T. Fentzke, S. Raizada, C. A. Tepley, and Q. Zhou (2012), Spo- radic metal atom and ion layers and their connection to chemistry and thermal structure in the mesopause region at Arecibo, Journal of Atmospheric and Solar-Terrestrial Physics, 74, 11–23.
Dickson, P. (2001), Sputnik: The shock of the century, Bloomsbury Publishing USA.
Dotan, I., P. M. Hierl, R. A. Morris, and A. A. Viggiano (1997), Rate constants for the reactions of N+ and N2+ with O2 as a function of temperature (3001800 K), International journal of mass spectrometry and ion processes, 167, 223–230.
Drob, D. P., J. T. Emmert, J. W. Meriwether, J. J. Makela, E. Doornbos, M. Conde, G. Hernandez, J. Noto, K. A. Zawdie, and S. E. McDonald (2015), An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth and Space Science, 2(7), 301–319.
Dungey, J. W. (1956), The influence of the geomagnetic field on turbulence in the ionosphere, Journal of Atmospheric and Terrestrial Physics, 8(12), 39–42, doi:http://dx.doi.org/10.1016/ 0021-9169(56)90089-7.
Dungey, J. W. (1959), Effect of a magnetic field on turbulence in an ionized gas.
D.W. Machuga, J. D. M. (2001), Numerical simulations of three-dimensional E-region ion trajec- tories in realistic tidal wind and E-field structures layer formation and transport.
Earle, G. D., R. L. Bishop, S. C. Collins, S. A. Gonzalez, and M. P. Sulzer (2000), Descending layer variability over Arecibo, Journal of Geophysical Research: Space Physics (19782012), 105(A11), 24,951–24,961.
Earth, C. A., D. W. Rusch, and A. I. Stewart (1973), The UV nitricoxide experiment for Atmosphere Explorer, Radio Science, 8(4), 379–385.
Fahey, D. W., I. Dotan, F. C. Fehsenfeld, D. L. Albritton, and L. A. Viehland (1981), Energy dependence of the rate constant of the reaction N++ NO at collision energies 0.04 to 2.5 eV, The Journal of Chemical Physics, 74(6), 3320–3323.
Fazio, R., and A. Jannelli (2010), Second Order Numerical Operator Splitting for 3D AdvectionDiffusion-Reaction Models, in Numerical Mathematics and Advanced Applications 2009, pp. 317–324, Springer.
Fell, C., J. I. Steinfeld, and S. Miller (1990), Quenching of N (2 D) by O (3 P), The Journal of Chemical Physics, 92(8), 4768–4777.
185

Feng, W., D. R. Marsh, M. P. Chipperfield, D. Janches, J. H ?offner, F. Yi, and J. Plane (2013), A global atmospheric model of meteoric iron, Journal of Geophysical Research: Atmospheres, 118(16), 9456–9474.
Fennelly, J. A., and D. G. Torr (1992), Photoionization and photoabsorption cross sections of O, N sub 2, O sub 2, and N for aeronomic calculations, Atomic Data and Nuclear Data Tables;(United States), 51(2).
Fentzke, J. T., and D. Janches (2008), A semiempirical model of the contribution from sporadic meteoroid sources on the meteor input function in the MLT observed at Arecibo, Journal of Geophysical Research: Space Physics, 113(A3).
Fentzke, J. T., D. Janches, I. Strelnikova, and M. Rapp (2009), Meteoric smoke particle properties derived using dual-beam Arecibo UHF observations of D-region spectra during different seasons, Journal of Atmospheric and Solar-Terrestrial Physics, 71(17), 1982–1991.
Ferguson, E. E. (1973), Rate constants of thermal energy binary ion-molecule reactions of aeronomic interest, Atomic data and nuclear data tables, 12(2), 159–178.
Fesen, C. G., D. W. Rusch, and J. G ?erard (1990), The latitudinal gradient of the NO peak density, Journal of Geophysical Research: Space Physics, 95(A11), 19,053–19,059.
Fitzmaurice, J. A. (1964), Simplification of the Chapman function for atmospheric attenuation, Applied Optics, 3(5), 640.
Fox, J. L., and K. Y. Sung (2001), Solar activity variations of the Venus thermosphere/ionosphere, Journal of Geophysical Research: Space Physics, 106(A10), 21,305–21,335.
Gardiner, G. W. (1969), Origin of the term ionosphere, Nature, 224(5224), 1096.
Garriott, O. K., and H. Rishbeth (1969), Introduction to ionospheric physics.
G ?erard, J., and C. A. Barth (1977), Highlatitude nitric oxide in the lower thermosphere, Journal of Geophysical Research, 82(4), 674–680.
Glosik, J., A. B. Rakshit, N. D. Twiddy, N. G. Adams, and D. Smith (1978), Measurement of the rates of reaction of the ground and metastable excited states of O2+, NO+ and O+ with atmospheric gases at thermal energy, Journal of Physics B: Atomic and Molecular Physics, 11(19), 3365.
Goldan, P. D., A. L. Schmeltekopf, F. C. Fehsenfeld, H. I. Schiff, and E. E. Ferguson (1966), Thermal Energy IonNeutral Reaction Rates. II. Some Reactions of Ionospheric Interest, The Journal of Chemical Physics, 44(11), 4095–4103.
Gossard, E. E., and W. H. Hooke (1975), Waves in the atmosphere: atmospheric infrasound and gravity waves-their generation and propagation, Atmospheric Science, 2.
Green, A. E. S., C. S. Lindenmeyer, and M. Griggs (1964), Molecular absorption in planetary atmospheres, Journal of Geophysical Research, 69(3), 493–504.
Hagan, M. E., R. G. Roble, and J. Hackney (2001), Migrating thermospheric tides, Journal of Geophysical Research: Space Physics, 106(A7), 12,739–12,752.
186

Haldoupis, C. (2011), A Tutorial Review on Sporadic E Layers, in Aeronomy of the Earth’s Atmo- sphere and Ionosphere, vol. 2, edited by M. A. Abdu and D. Pancheva, chap. 29, pp. 381–394, Springer Netherlands, doi:10.1007/978-94-007-0326-1 29.
Hart, J. F. (1968), Computer Approximations, John Wiley.
Hedin, A. E. (1987), MSIS86 thermospheric model, Journal of Geophysical Research: Space Physics,
92(A5), 4649–4662.
Hedin, A. E. (1991), Extension of the MSIS thermosphere model into the middle and lower atmo-
sphere, Journal of Geophysical Research: Space Physics, 96(A2), 1159–1172.
Heelis, R. A. (2004), Electrodynamics in the low and middle latitude ionosphere: a tutorial, Journal of Atmospheric and Solar-Terrestrial Physics, 66 (10), 825–838, doi:http://dx.doi.org/10.1016/j. jastp.2004.01.034.
Helmer, M., and J. M. C. Plane (1994), Kinetic study of the reaction between Fe and O3 under mesospheric conditions, Journal of the Chemical Society, Faraday Transactions, 90(1), 31–37.
Helmer, M., J. Plane, J. Qian, and C. S. Gardner (1998), A model of meteoric iron in the upper atmosphere, Journal of Geophysical Research: Atmospheres, 103(D9), 10,913–10,925.
Henke, B. L., E. M. Gullikson, and J. C. Davis (1993), X-ray interactions: photoabsorption, scat- tering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92, Atomic data and nuclear data tables, 54(2), 181–342.
Herron, J. T. (1999), Evaluated chemical kinetics data for reactions of N (2 D), N (2 P), and N 2 (A 3 Σ u+) in the gas phase, Journal of physical and chemical reference data, 28 (5), 1453–1483.
Hierl, P. M., I. Dotan, J. V. Seeley, J. M. Van Doren, R. A. Morris, and A. A. Viggiano (1996), Rate constants for the reactions of O+ with N2 and O2 as a function of temperature (3001800 K), The Journal of Chemical Physics, 106(9), 3540–3544.
Hinteregger, H. E. (1970), EXTREME ULTRAVIOLET SOLAR SPECTRUM AND ITS VARIA- TION DURING A SOLAR CYCLE, Tech. rep.
Hinteregger, H. E., K. Fukui, and B. R. Gilson (1981), Observational, reference and model data on solar EUV, from measurements on AEE, Geophysical Research Letters, 8(11), 1147–1150.
Hulburt, E. O. (1939), The E Region of the Ionosphere, Physical Review, 55(7), 639. Hundsdorfer, W., and J. G. Verwer (2013), Numerical solution of time-dependent advection-
diffusion-reaction equations, vol. 33, Springer Science & Business Media.
Hunten, D. M., R. P. Turco, and O. B. Toon (1980), Smoke and dust particles of meteoric origin
in the mesosphere and stratosphere, Journal of the Atmospheric Sciences, 37(6), 1342–1357.
Janches, D., S. E. Palo, E. M. Lau, S. K. Avery, J. P. Avery, S. de la Pena, and N. A. Makarov (2004), Diurnal and seasonal variability of the meteoric flux at the South Pole measured with radars, Geophysical Research Letters, 31(20).
187

Janches, D., C. J. Heinselman, J. L. Chau, A. Chandran, and R. Woodman (2006), Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars, Journal of Geophysical Research: Space Physics, 111(A7).
Jensen, D. E., and G. A. Jones (1974), Catalysis of radical recombination in flames by iron, The Journal of Chemical Physics, 60(9), 3421–3425.
Johnsen, R., and M. A. Biondi (1980), Laboratory measurements of the O+ (D)+ N2 and O+ (D)+ O2 reaction rate coefficients and their ionospheric implications, Geophysical Research Letters, 7(5), 401–403.
Jones, J., and P. Brown (1994), The radiant distribution of sporadic meteors, Planetary and Space Science, 42(2), 123–126.
Kamide, Y., and A. C.-L. Chian (2007), Handbook of the solar-terrestrial environment, Springer Science & Business Media.
Kane, T. J., and C. S. Gardner (1993), Structure and seasonal variability of the nighttime meso- spheric Fe layer at midlatitudes, Journal of Geophysical Research: Atmospheres, 98 (D9), 16,875– 16,886.
Kella, D., P. J. Johnson, H. B. Pedersen, L. Vejby-Christensen, and L. H. Andersen (1996), Branch- ing Ratios for Dissociative Recombination of N 15 N+ 14, Physical review letters, 77(12), 2432.
Kelley, M. C. (2009), The Earth’s Ionosphere: Plasma Physics & Electrodynamics, vol. 96, Aca- demic press.
Kelley, M. C. (2013), The Earth’s Electric Field: Sources from Sun to Mud, Newnes.
Kibrom, B. (2009), NUMERICAL INVESTIGATION OF SPORADIC-E LAYER FORMATION
IN MIDLATITUDE.
Kirby, K., E. R. Constantinides, S. Babeu, M. Oppenheimer, and G. A. Victor (1979), Photoioniza- tion and photoabsorption cross sections of He, O, N2 and O2 for aeronomic calculations, Atomic data and nuclear data tables, 23(1), 63–81.
Klais, O., P. C. Anderson, and M. J. Kurylo (1980), A reinvestigation of the temperature depen- dence of the rate constant for the reaction O+ O2+ M O3+ M (for M= O2, N2, and Ar) by the flash photolysis resonance fluorescence technique, International Journal of Chemical Kinetics, 12(7), 469–490.
Klopfenstein, R. W. (1971), Numerical differentiation formulas for stiff systems of ordinary differ- ential equations, RCA REVIEW, 32(3), 447–+.
Kopp, E., P. Eberhardt, U. Herrmann, and L. G. Bj ?orn (1985), Positive ion composition of the highlatitude summer D region with noctilucent clouds, Journal of Geophysical Research: Atmo- spheres, 90(D7), 13,041–13,053.
Langowski, M. P., C. von Savigny, J. P. Burrows, W. Feng, J. M. C. Plane, D. R. Marsh, D. Janches, M. Sinnhuber, A. C. Aikin, and P. Liebing (2015), Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 and 150 km altitude and WACCM- Mg model results, Atmospheric Chemistry and Physics, 15(1), 273–295.
188

Lau, E. M., S. K. Avery, J. P. Avery, D. Janches, S. E. Palo, R. Schafer, and N. A. Makarov (2006), Statistical characterization of the meteor trail distribution at the South Pole as seen by a VHF interferometric meteor radar, Radio Science, 41(4).
Lean, J. (1987), Solar ultraviolet irradiance variations: A review, Journal of Geophysical Research: Atmospheres, 92(D1), 839–868.
Lean, J. (1990), A comparison of models of the Sun’s extreme ultraviolet irradiance variations, Journal of Geophysical Research: Space Physics, 95(A8), 11,933–11,944.
Lean, J. L., H. P. Warren, J. T. Mariska, and J. Bishop (2003), A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather, Journal of Geophysical Research: Space Physics, 108(A2).
Levandier, D. J., R. A. Dressler, S. Williams, and E. Murad (1997), A high-temperature guided-ion beam study of Na+ X+(X= O 2, NO, N 2) charge-transfer reactions, Journal of the Chemical Society, Faraday Transactions, 93(16), 2611–2617.
Li, X., Y.-L. Huang, G. D. Flesch, and C. Y. Ng (1997), A state-selected study of the ionmolecule reactions O+(4 S, 2 D, 2 P)+ N 2, The Journal of Chemical Physics, 106(4), 1373–1381.
Lin, Y. C., and Y. H. Chu (2017), Model simulations of ion and electron density profiles in iono- spheric E and F regions, Journal of Geophysical Research: Space Physics, 122(2), 2505–2529.
MacLeod, M. A., T. J. Keneshea, and R. S. Narcisi (1975), Numerical modelling of a metallic ion sporadicE layer, Radio Science, 10(3), 371–388.
Marsh, D. R., D. Janches, W. Feng, and J. Plane (2013), A global model of meteoric sodium, Journal of Geophysical Research: Atmospheres, 118(19), 11,411–442,452.
Martinez-Nunez, E., C. L. Whalley, D. Shalashilin, and J. M. C. Plane (2010), Dynamics of Mg++ H2O+ He: Capture, collisional stabilization and collision-induced dissociation, The Journal of Physical Chemistry A, 114(23), 6472–6479.
Mathews, J. D. (2001), Evidence for electrodynamic linkages between spread-F, ion rain, the inter- mediate layer, and sporadic E results from observations and simulations.
Matuura, N., T. Tsuda, and S. Nozawa (2013), Field-aligned current loop model on formation of sporadic metal layers, Journal of Geophysical Research: Space Physics, 118(7), 4628–4639, doi:10.1002/jgra.50414.
McDougall, W. A. (1985), Sputnik, the space race, and the Cold War, Bulletin of the Atomic Scientists, 41(5), 20–25.
McFarland, M., D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf (1974), Energy dependence and branching ratio of the N2++ O reaction, Journal of Geophysical Re- search, 79(19), 2925–2926.
McLaughlin, B. M., and K. L. Bell (1998), Electron-impact excitation of the fine-structure levels,) of singly ionized atomic oxygen, Journal of Physics B: Atomic, Molecular and Optical Physics, 31(19), 4317.
189

190 Mehr, F. J., and M. A. Biondi (1969), Electron temperature dependence of recombination of O 2+
and N 2+ ions with electrons, Physical Review, 181(1), 264.
Midey, A. J., and A. A. Viggiano (1999), Rate constants for the reaction of O 2+ with NO from
300 to 1400 K, The Journal of Chemical Physics, 110(22), 10,746–10,748.
Mikhailov, A. V., and J. Lilensten (2004), A revised method to extract thermospheric parameters
from incoherent scatter observations, Annals of Geophysics, 47(2-3 Sup.).
Moore, L., M. Mendillo, C. Martinis, and S. Bailey (2006), Daytoday variability of the E layer,
Journal of Geophysical Research: Space Physics, 111(A6).
Nagasawa, C., and M. Abo (1995), Lidar observations of a lot of sporadic sodium layers in midlat-
itude, Geophysical Research Letters, 22(3), 263–266.
Nagy, A. F., and P. M. Banks (1970), Photoelectron fluxes in the ionosphere, Journal of Geophysical
Research, 75(31), 6260–6270.
Nahar, S. N., M. A. Bautista, and A. K. Pradhan (1997), Electron-ion recombination of neutral
iron, The Astrophysical Journal, 479(1), 497.
Nicolet, M. (1953), The collision frequency of electrons in the ionosphere, Journal of Atmospheric
and Terrestrial Physics, 3(4), 200–211.
Nygren, T., L. Jalonen, J. Oksman, and T. Turunen (1984), The role of electric field and neutral wind direction in the formation of sporadic E-layers, Journal of Atmospheric and Terrestrial Physics, 46(4), 373–381.
Ohshio, M., R. Maeda, and H. Sakagami (1966), Height distribution of local photoionization effi- ciency, J. Radio Res. Lab. Jpn, 13, 245–252.
O’Keefe, A., G. Mauclaire, D. Parent, and M. T. Bowers (1986), Product energy disposal in the reaction of N+ (3 P) with O2 (X 3Σ), The Journal of Chemical Physics, 84(1), 215–219.
Osterman, G. B., R. A. Heelis, and G. J. Bailey (1994), Modeling the formation of intermediate lay- ers at Arecibo latitudes, Journal of Geophysical Research, 99 (A6), 11,357, doi:10.1029/94ja00519.
Pavlov, A. V. (2012), Ion Chemistry of the Ionosphere at E- and F-Region Altitudes: A Review, Surveys in Geophysics, 33(5), 1133–1172, doi:10.1007/s10712-012-9189-8.
Pavlov, A. V., and N. M. Pavlova (2013), Comparison of NmE measured by the boulder ionosonde with model predictions near the spring equinox, Journal of Atmospheric and Solar-Terrestrial Physics, 102, 39–47.
Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE00 empirical model of the atmosphere: Statistical comparisons and scientific issues, Journal of Geophysical Research: Space Physics, 107(A12).
Pifko, S., D. Janches, S. Close, J. Sparks, T. Nakamura, and D. Nesvorny (2013), The Meteoroid Input Function and predictions of mid-latitude meteor observations by the MU radar, Icarus, 223(1), 444–459.

191 Plane, J. (2009), A reference atmosphere for the atomic sodium layer, School of Chemistry, Uni-
versity of Leeds, Leeds, UK. PDF.
Plane, J. M. (2010), Magnesium Chemistry in the Upper Atmosphere, Tech. rep.
Plane, J. M. C. (1991), The chemistry of meteoric metals in the Earth’s upper atmosphere, Inter- national Reviews in Physical Chemistry, 10(1), 55–106.
Plane, J. M. C. (2002), Laboratory studies of meteoric metal chemistry, Meteors in the Earth’s Atmosphere, pp. 289–309.
Plane, J. M. C. (2003), Atmospheric chemistry of meteoric metals, Chemical Reviews, 103(12), 4963–4984.
Plane, J. M. C. (2004), A time-resolved model of the mesospheric Na layer: constraints on the meteor input function, Atmospheric Chemistry and Physics, 4(3), 627–638.
Plane, J. M. C. (2012), Cosmic dust in the earth’s atmosphere, Chemical Society Reviews, 41 (19), 6507–6518.
Plane, J. M. C., and M. Helmer (1995), Laboratory study of the reactions Mg+ O 3 and MgO+ O 3. Implications for the chemistry of magnesium in the upper atmosphere, Faraday discussions, 100, 411–430.
Plane, J. M. C., and R. J. Rollason (2001), Kinetic study of the reactions of CaO with H2O, CO2, O2, and O3: Implications for calcium chemistry in the mesosphere, The Journal of Physical Chemistry A, 105(29), 7047–7056.
Plane, J. M. C., R. M. Cox, and R. J. Rollason (1999), Metallic layers in the mesopause and lower thermosphere region, Advances in Space Research, 24(11), 1559–1570.
Plane, J. M. C., W. Feng, and E. C. M. Dawkins (2015), The Mesosphere and Metals: Chemistry and Changes, Chemical Reviews, 115(10), 4497–4541, doi:10.1021/cr500501m.
Popova, O. (2005), Meteoroid Ablation Models, in Modern Meteor Science An Interdisciplinary View, edited by R. Hawkes, I. Mann, and P. Brown, pp. 303–319, Springer Netherlands, Dor- drecht, doi:10.1007/1-4020-5075-5 32.
Qian, L., A. G. Burns, B. A. Emery, B. Foster, G. Lu, A. Maute, A. D. Richmond, R. G. Roble, S. C. Solomon, and W. Wang (2014), The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system, Modeling the Ionosphere-Thermosphere System, 201, 73–83.
Rebecca (2001), Evolution and dynamics of ionospheric intermediate layers above arecibo obeser- vatory, Ph.D. thesis.
Rees, M. H. (1989), Physics and chemistry of the upper atmosphere, vol. 1, Cambridge University Press.
Reiher, T. (1978), Statilit ?atsuntersuchungen bei ru ?ckw ?artigen Differentiationsformeln in Abh ?angigkeit von einem Parameter, Tech. rep.
Richards, P. G. (2011), Reexamination of ionospheric photochemistry, Journal of Geophysical Re- search: Space Physics, 116(A8).

Richards, P. G., and D. G. Torr (1985), The altitude variation of the ionospheric photoelectron flux: A comparison of theory and measurement, Journal of Geophysical Research: Space Physics, 90(A3), 2877–2884.
Richards, P. G., J. A. Fennelly, and D. G. Torr (1994), EUVAC: A solar EUV flux model for aeronomic calculations, Journal of Geophysical Research: Space Physics, 99(A5), 8981–8992.
Richards, P. G., D. Bilitza, and D. Voglozin (2010), Ion density calculator (IDC): A new efficient model of ionospheric ion densities, Radio Science, 45(5).
Richmond, A. D. (1976), Electric field in the ionosphere and plasmasphere on quiet days, Journal of Geophysical Research, 81(7), 1447–1450.
Richmond, A. D. (1979), Ionospheric wind dynamo theory: A review, Journal of geomagnetism and geoelectricity, 31(3), 287–310.
Richmond, A. D., and A. Maute (2014), Ionospheric electrodynamics modeling, Modeling the Ionosphere-Thermosphere System, pp. 57–71.
Richmond, A. D., and J. P. Thayer (2000), Ionospheric electrodynamics: A tutorial, Magnetospheric Current Systems, pp. 131–146.
Richmond, A. D., M. Blanc, B. A. Emery, R. H. Wand, B. G. Fejer, R. F. Woodman, S. Ganguly, P. Amayenc, R. A. Behnke, C. Calderon, and J. V. Evans (1980), An empirical model of quiet-day ionospheric electric fields at middle and low latitudes, Journal of Geophysical Research, 85 (A9), 4658, doi:10.1029/JA085iA09p04658.
Roddy, P. A. (2004), Relative concentrations of molecular and metallic ions in midlatitude inter- mediate and sporadic-E layers, Geophysical Research Letters, 31(19), doi:10.1029/2004gl020604.
Rollason, R. J., and J. M. C. Plane (2000), The reactions of FeO with O 3, H 2, H 2 O, O 2 and CO 2, Physical Chemistry Chemical Physics, 2(10), 2335–2343.
Rollason, R. J., and J. M. C. Plane (2001), A kinetic study of the reactions of MgO with H2O, CO 2 and O 2: implications for magnesium chemistry in the mesosphere, Physical Chemistry Chemical Physics, 3(21), 4733–4740.
Rubin, A. E., and J. N. Grossman (2010), Meteorite and meteoroid: New comprehensive definitions, Meteoritics & Planetary Science, 45(1), 114–122.
Rusch, D. W., and C. A. Barth (1975), Satellite measurements of nitric oxide in the polar region, Journal of Geophysical Research, 80(25), 3719–3721.
Rusch, D. W., J. G ?erard, and C. G. Fesen (1991), The diurnal variation of NO, N (D), and ions in the thermosphere: A comparison of satellite measurements to a model, Journal of Geophysical Research: Space Physics, 96(A7), 11,331–11,339.
Russell, J. M., L. L. Gordley, J. H. Park, S. R. Drayson, W. D. Hesketh, R. J. Cicerone, A. F. Tuck, J. E. Frederick, J. E. Harries, and P. J. Crutzen (1993), The halogen occultation experiment, Journal of Geophysical Research: Atmospheres, 98(D6), 10,777–10,797.
Rutherford, J. A., and D. A. Vroom (1972), Formation of iron ions by charge transfer, The Journal of Chemical Physics, 57(8), 3091–3093.
192

193 Rutherford, J. A., R. F. Mathis, B. R. Turner, and D. A. Vroom (1971), Formation of magnesium
ions by charge transfer, The Journal of Chemical Physics, 55(8), 3785–3793.
Savitzky, A., and M. J. E. Golay (1964), Smoothing and differentiation of data by simplified least
squares procedures, Analytical chemistry, 36(8), 1627–1639.
Schunk, R. W., and J. C. G. Walker (1973), Theoretical ion densities in the lower ionosphere,
Planetary and Space Science, 21(11), 1875–1896.
Scott, G. B. I., D. A. Fairley, D. B. Milligan, C. G. Freeman, and M. J. McEwan (1999), Gas phase reactions of some positive ions with atomic and molecular oxygen and nitric oxide at 300 K, The Journal of Physical Chemistry A, 103(37), 7470–7473.
Seaton, M. J., and D. E. Osterbrock (1957), Relative [o II] Intensities in Gaseous Nebulae, The Astrophysical Journal, 125, 66.
Self, D. E., and J. M. C. Plane (2003), A kinetic study of the reactions of iron oxides and hydroxides relevant to the chemistry of iron in the upper mesosphere, Physical Chemistry Chemical Physics, 5(7), 1407–1418.
Shihira, Y., T. Suzuki, S.-i. Unayama, H. Umemoto, and S. Tsunashima (1994), Reactions of N (2 2 D) and N (2 2 P) with O 2, Journal of the Chemical Society, Faraday Transactions, 90(4), 549–552.
Singer, W., U. von Zahn, and J. Weis (2004), Diurnal and annual variations of meteor rates at the arctic circle, Atmospheric Chemistry and Physics, 4(5), 1355–1363.
Smith, A. K. (2012), Global dynamics of the MLT, Surveys in Geophysics, 33(6), 1177–1230.
Smith, D. R., P. De, S. AdlerGolden, and C. Roth (1993), Empirical correlations in thermospheric NO density measured from rockets and satellites, Journal of Geophysical Research: Space Physics, 98(A6), 9453–9458.
Smith, L. G. (1969), A sequence of rocket observations of night-time sporadic-E.
Smith, L. G., and E. A. Mechtly (1972), Rocket Observations of Sporadic-ELayers, Radio Science,
7(3), 367–376, doi:10.1029/RS007i003p00367.
Sojka, J. J., J. Jensen, M. David, R. W. Schunk, T. Woods, and F. Eparvier (2013), Modeling the ionospheric E and F1 regions: Using SDOEVE observations as the solar irradiance driver, Journal of Geophysical Research: Space Physics, 118(8), 5379–5391.
Sojka, J. J., J. B. Jensen, M. David, R. W. Schunk, T. Woods, F. Eparvier, M. P. Sulzer, S. A. Gonzalez, and J. V. Eccles (2014), Ionospheric modelobservation comparisons: E layer at Arecibo Incorporation of SDOEVE solar irradiances, Journal of Geophysical Research: Space Physics, 119(5), 3844–3856.
Solomon, S. (1991), Optical aeronomy, Reviews of Geophysics Supplement, 29, 1089–1109.
Solomon, S., P. J. Crutzen, and R. G. Roble (1982), Photochemical coupling between the thermo- sphere and the lower atmosphere: 1. Odd nitrogen from 50 to 120 km, Journal of Geophysical Research: Oceans, 87(C9), 7206–7220.

194 Solomon, S. C. (2006), Numerical models of the E-region ionosphere, Advances in Space Research,
37(5), 1031–1037.
Solomon, S. C., and L. Qian (2005), Solar extremeultraviolet irradiance for general circulation
models, Journal of Geophysical Research: Space Physics, 110(A10).
Solomon, S. C., S. M. Bailey, and T. N. Woods (2001), Effect of solar soft Xrays on the lower
ionosphere, Geophysical Research Letters, 28(11), 2149–2152.
Strang, G. (1968), On the construction and comparison of difference schemes, SIAM Journal on
Numerical Analysis, 5(3), 506–517.
Strickland, D. J., J. L. Lean, R. R. Meier, A. B. Christensen, L. J. Paxton, D. Morrison, J. D. Craven, R. L. Walterscheid, D. L. Judge, and D. R. McMullin (2004), Solar EUV irradiance variability derived from terrestrial far ultraviolet dayglow observations, Geophysical Research Letters, 31(3).
Strobel, D. F., T. R. Young, R. R. Meier, T. P. Coffey, and A. W. Ali (1974), The nighttime ionosphere: E region and lower F region, Journal of Geophysical Research, 79(22), 3171–3178.
Stubbe, P. (1970), Simultaneous solution of the time dependent coupled continuity equations, heat conduction equations, and equations of motion for a system consisting of a neutral gas, an electron gas, and a four component ion gas, Journal of Atmospheric and Terrestrial Physics, 32(5), 865–903.
Swider, W. (1984), Ionic and neutral concentrations of Mg and Fe near 92 km, Planetary and Space Science, 32(3), 307–312.
Swider, W., and M. E. Gardner (1969), On the accuracy of Chapman function approximations, Applied Optics, 8(3), 725.
Swidner, W. (1964), The determination of the optical depth at large solar zenith distances, Plane- tary and Space Science, 12(8), 761–782.
Titheridge, J. E. (1997), Model results for the ionospheric E region: solar and seasonal changes, Annales Geophysicae, 15(1), 63–78.
Titheridge, J. E. (2000), Modelling the peak of the ionospheric E-layer, Journal of Atmospheric and Solar-Terrestrial Physics, 62(2), 93–114.
Torr, D. G., and M. R. Torr (1979), Chemistry of the thermosphere and ionosphere, Journal of Atmospheric and Terrestrial Physics, 41(7), 797–839.
Turunen, E., H. Matveinen, J. Tolvanen, and H. Ranta (1996), D-region ion chemistry model, STEP handbook of ionospheric models, pp. 1–25.
VanZandt, T. E., W. L. Clark, and J. M. Warnock (1972), Magnetic apex coordinates: A magnetic coordinate system for the ionospheric F 2 layer, Journal of Geophysical Research, 77(13), 2406– 2411.
Vasylinas, V. M. (2012), The physical basis of ionospheric electrodynamics, in Annales Geophysicae, vol. 30, pp. 357–369, Copernicus GmbH.

195 Vejby-Christensen, L., D. Kella, H. B. Pedersen, and L. H. Andersen (1998), Dissociative recombi-
nation of NO+, Physical Review A, 57(5), 3627.
Viehl, T. P., J. M. C. Plane, W. Feng, and J. H ?offner (2016), The photolysis of FeOH and its effect
on the bottomside of the mesospheric Fe layer, Geophysical Research Letters.
Voiculescu, M., and M. Ignat (2002), EFFECT OF BACKGROUND WIND AND TURBULENT
DIFFUSION ON SPORADIC E LAYERS FORMATION AT HIGH LATITUDES.
Vondrak, T., J. M. C. Plane, S. Broadley, and D. Janches (2008), A chemical model of meteoric
ablation, Atmos. Chem. Phys., 8(23), 7015–7031, doi:10.5194/acp-8-7015-2008.
Weisstein, E. W. (1999), ” Newton’s method,” MathWorld-A Wolfram Web Resource,
http://mathworld. wolfram. com/NewtonsMethod. html.
Whalley, C. L., and J. M. C. Plane (2010), Meteoric ion layers in the Martian atmosphere, Faraday
discussions, 147, 349–368.
Whalley, C. L., J. C. G. Mart ??n, T. G. Wright, and J. M. C. Plane (2011), A kinetic study of Mg+ and Mg-containing ions reacting with O 3, O 2, N 2, CO2, N2O and H2O: implications for magnesium ion chemistry in the upper atmosphere, Physical Chemistry Chemical Physics, 13(13), 6352–6364.
Whitehead, J. D. (1961), The formation of the sporadic-E layer in the temperate zones, Journal of Atmospheric and Terrestrial Physics, 20(1), 49–58, doi:http://dx.doi.org/10.1016/0021-9169(61) 90097-6.
Whitehead, J. D. (1989), Recent work on mid-latitude and equatorial sporadic-E, Journal of At- mospheric and Terrestrial Physics, 51(5), 401–424.
Wiese, W. L., M. W. Smith, and B. M. Glennon (1966), Atomic Transition Probabilities. Volume 1. Hydrogen through Neon, Tech. rep.
Woodcock, K. R. S., T. Vondrak, S. R. Meech, and J. M. C. Plane (2006), A kinetic study of the reactions FeO++ O, Fe+· N 2+ O, Fe+· O 2+ O and FeO++ CO: implications for sporadic E layers in the upper atmosphere, Physical Chemistry Chemical Physics, 8(15), 1812–1821.
Woods, T., L. W. Acton, S. Bailey, F. Eparvier, H. Garcia, D. Judge, J. Lean, J. T. Mariska, D. Mc- Mullin, and G. Schmidtke (2003), Solar Extreme Ultraviolet and XRay Irradiance Variations, Solar Variability and Its Effects on Climate, pp. 127–140.
Woods, T. N., and G. J. Rottman (1990), Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988, Journal of Geophysical Research: Space Physics, 95(A5), 6227–6236.
Woods, T. N., F. G. Eparvier, R. Hock, A. R. Jones, D. Woodraska, D. Judge, L. Didkovsky, J. Lean, J. Mariska, and H. Warren (2012), Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments, Solar Physics, 275(1-2), 115–143.
Yi, F., S. Zhang, C. Yu, Y. Zhang, Y. He, F. Liu, K. Huang, C. Huang, and Y. Tan (2013), Simul- taneous and common-volume three-lidar observations of sporadic metal layers in the mesopause region, Journal of Atmospheric and Solar-Terrestrial Physics, 102, 172–184.

Zipf, E. C. (1980), The dissociative recombination of vibrationally excited N2+ ions, Geophysical Research Letters, 7(9), 645–648.
指導教授 朱延祥(Yen-Hsyang Chu) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明