參考文獻 |
1. Whittingham, M.S., History, evolution, and future status of energy storage. Proceedings of the IEEE, 2012. 100(Special Centennial Issue): p. 1518-1534.
2. Henderson, W.A., Glyme? lithium salt phase behavior. The Journal of Physical Chemistry B, 2006. 110(26): p. 13177-13183.
3. Zhang, P., et al., Synthesis of core-shell structured CdS@CeO 2 and CdS@TiO 2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catalysis Today, 2017. 281: p. 181-188.
4. Qian, J., et al., High rate and stable cycling of lithium metal anode. Nature communications, 2015. 6: p. 6362.
5. Bruce, P.G., et al., Li–O 2 and Li–S batteries with high energy storage. Nature materials, 2012. 11(1): p. 19.
6. Sun, J., et al., A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes. Scientific reports, 2017. 7: p. 41217.
7. Varzi, A., et al., Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. Journal of Materials Chemistry A, 2016. 4(44): p. 17251-17259.
8. Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014. 7(2): p. 513-537.
9. Zhang, J., et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016. 28: p. 447-454.
10. Brissot, C., et al., Dendritic growth mechanisms in lithium/polymer cells. Journal of power sources, 1999. 81: p. 925-929.
11. Meyer, W.H., Polymer electrolytes for lithium?ion batteries. Advanced materials, 1998. 10(6): p. 439-448.
12. Breuer, S., et al., Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3. Journal of Materials Chemistry A, 2015. 3(42): p. 21343-21350.
13. Buschmann, H., et al., Structure and dynamics of the fast lithium ion conductor “Li 7 La 3 Zr 2 O 12”. Physical Chemistry Chemical Physics, 2011. 13(43): p. 19378-19392.
14. Awaka, J., et al., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009. 182(8): p. 2046-2052.
15. Awaka, J., et al., Neutron powder diffraction study of tetragonal Li 7 La 3 Hf 2 O 12 with the garnet-related type structure. Journal of Solid State Chemistry, 2010. 183(1): p. 180-185.
16. Cussen, E.J., Structure and ionic conductivity in lithium garnets. Journal of Materials Chemistry, 2010. 20(25): p. 5167-5173.
17. Geiger, C.A., et al., Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorganic chemistry, 2010. 50(3): p. 1089-1097.
18. Wolfenstine, J., et al., High conductivity of dense tetragonal Li7La3Zr2O12. Journal of Power Sources, 2012. 208: p. 193-196.
19. Larraz, G., A. Orera, and M. Sanjuan, Cubic phases of garnet-type Li 7 La 3 Zr 2 O 12: the role of hydration. Journal of Materials Chemistry A, 2013. 1(37): p. 11419-11428.
20. Matsui, M., et al., Phase transformation of the garnet structured lithium ion conductor: Li7La3Zr2O12. Solid State Ionics, 2014. 262: p. 155-159.
21. Kim, K.-w., et al., Cubic phase behavior and lithium ion conductivity of Li7La3Zr2O12 prepared by co-precipitation synthesis for all-solid batteries. Journal of Industrial and Engineering Chemistry, 2016. 36: p. 279-283.
22. Zhang, X. and J. Fergus, Phase Content and Conductivity of Aluminum-and Tantalum-Doped Garnet-Type Lithium Lanthanum Zirconate Solid Electrolyte Materials. ECS Transactions, 2017. 77(11): p. 509-516.
23. Yu, S., et al., Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials, 2015. 28(1): p. 197-206.
24. Ohta, S., T. Kobayashi, and T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7? X La3 (Zr2? X, NbX) O12 (X= 0–2). Journal of Power Sources, 2011. 196(6): p. 3342-3345.
25. Kotobuki, M., et al., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. Journal of Power Sources, 2011. 196(18): p. 7750-7754.
26. Kotobuki, M., et al., Electrochemical properties of Li7La3Zr2O12 solid electrolyte prepared in argon atmosphere. Journal of Power Sources, 2012. 199: p. 346-349.
27. Huang, M., et al., Effect of sintering temperature on structure and ionic conductivity of Li7? xLa3Zr2O12? 0.5 x (x= 0.5~ 0.7) ceramics. Solid State Ionics, 2011. 204: p. 41-45.
28. Zhu, Y., X. He, and Y. Mo, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. Journal of Materials Chemistry A, 2016. 4(9): p. 3253-3266.
29. Murugan, R., V. Thangadurai, and W. Weppner, Schnelle lithiumionenleitung in granatartigem Li7La3Zr2O12. Angewandte Chemie, 2007. 119(41): p. 7925-7928.
30. Cheng, L., et al., Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS applied materials & interfaces, 2015. 7(32): p. 17649-17655.
31. Miara, L., et al., About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS applied materials & interfaces, 2016. 8(40): p. 26842-26850.
32. Li, Y., Y. Cao, and X. Guo, Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6. 75La3Zr1. 75Ta0. 25O12 solid electrolytes. Solid State Ionics, 2013. 253: p. 76-80.
33. Li, Y., et al., Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power Sources, 2014. 248: p. 642-646.
34. Shao, C., et al., Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method. Solid State Ionics, 2016. 287: p. 13-16.
35. Kotobuki, M., et al., Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. Journal of the Electrochemical Society, 2010. 157(10): p. A1076-A1079.
36. Du?vel, A., et al., Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. The Journal of Physical Chemistry C, 2012. 116(29): p. 15192-15202.
37. Allen, J.L., et al., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources, 2012. 206: p. 315-319.
38. Cheng, L., et al., Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li 7 La 3 Zr 2 O 12. Journal of Materials Chemistry A, 2014. 2(1): p. 172-181.
39. Deviannapoorani, C., et al., Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. Journal of Power Sources, 2013. 240: p. 18-25.
40. Hubaud, A.A., et al., Low temperature stabilization of cubic (Li 7? x Al x/3) La 3 Zr 2 O 12: role of aluminum during formation. Journal of Materials Chemistry A, 2013. 1(31): p. 8813-8818.
41. El Shinawi, H. and J. Janek, Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. Journal of Power Sources, 2013. 225: p. 13-19.
42. Thompson, T., et al., Tetragonal vs. cubic phase stability in Al–free Ta doped Li 7 La 3 Zr 2 O 12 (LLZO). Journal of Materials Chemistry A, 2014. 2(33): p. 13431-13436.
43. Liu, B., et al., Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries. Nano letters, 2017. 17(8): p. 4917-4923.
44. Chen, R.-J., et al., Effect of calcining and Al doping on structure and conductivity of Li7La3Zr2O12. Solid State Ionics, 2014. 265: p. 7-12.
45. Dhivya, L. and R. Murugan, Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet. ACS applied materials & interfaces, 2014. 6(20): p. 17606-17615.
46. Janani, N., et al., Influence of sintering additives on densification and Li+ conductivity of Al doped Li 7 La 3 Zr 2 O 12 lithium garnet. RSC Advances, 2014. 4(93): p. 51228-51238.
47. Ishiguro, K., et al., Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. Journal of The Electrochemical Society, 2014. 161(5): p. A668-A674.
48. Miara, L.J., et al., First-principles studies on cation dopants and electrolyte| cathode interphases for lithium garnets. Chemistry of Materials, 2015. 27(11): p. 4040-4047.
49. Jalem, R., et al., Insights into the lithium-ion conduction mechanism of garnet-type cubic Li5La3Ta2O12 by ab-initio calculations. The Journal of Physical Chemistry C, 2015. 119(36): p. 20783-20791.
50. Shao, C., et al., Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochimica Acta, 2017. 225: p. 345-349.
51. Sudo, R., et al., Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics, 2014. 262: p. 151-154.
52. Shin, D.O., et al., Synergistic multi-doping effects on the Li 7 La 3 Zr 2 O 12 solid electrolyte for fast lithium ion conduction. Scientific reports, 2015. 5: p. 18053.
53. Ahmad, M.M., Estimation of the concentration and mobility of mobile Li+ in the cubic garnet-type Li 7 La 3 Zr 2 O 12. RSC Advances, 2015. 5(33): p. 25824-25829.
54. Rosenkiewitz, N., et al., Nitrogen-free sol–gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO). Journal of Power Sources, 2015. 278: p. 104-108.
55. Rawlence, M., et al., On the chemical stability of post-lithiated garnet Al-stabilized Li 7 La 3 Zr 2 O 12 solid state electrolyte thin films. Nanoscale, 2016. 8(31): p. 14746-14753.
56. Botros, M., et al., Field assisted sintering of fine-grained Li7? 3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. Journal of Power Sources, 2016. 309: p. 108-115.
57. Lobe, S., et al., Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. Journal of power sources, 2016. 307: p. 684-689.
58. Dermenci, K.B., E. Cekic, and S. Turan, Al stabilized Li7La3Zr2O12 solid electrolytes for all-solid state Li-ion batteries. International Journal of Hydrogen Energy, 2016. 41(23): p. 9860-9867.
59. Rangasamy, E., J. Wolfenstine, and J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics, 2012. 206: p. 28-32.
60. Bernuy-Lopez, C., et al., Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chemistry of Materials, 2014. 26(12): p. 3610-3617.
61. Wagner, R., et al., Crystal structure of garnet-related Li-ion conductor Li7–3 x Ga x La3Zr2O12: fast Li-ion conduction caused by a different cubic modification? Chemistry of Materials, 2016. 28(6): p. 1861-1871.
62. Rettenwander, D., et al., Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12 solid electrolytes. Chemistry of Materials, 2016. 28(7): p. 2384-2392.
63. Li, C., et al., Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors. Journal of Alloys and Compounds, 2017. 695: p. 3744-3752.
64. Yang, S.H., et al., Ionic conductivity of Ga-doped LLZO prepared using Couette–Taylor reactor for all-solid lithium batteries. Journal of Industrial and Engineering Chemistry, 2017. 56: p. 422-427.
65. Wu, J.-F., et al., Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS applied materials & interfaces, 2017. 9(2): p. 1542-1552.
66. Jiang, Y., et al., Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ionics, 2017. 300: p. 73-77.
67. Du, F., et al., All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. Journal of Power Sources, 2015. 300: p. 24-28.
68. Wu, J.-F., et al., Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS applied materials & interfaces, 2017. 9(14): p. 12461-12468.
69. Tenhaeff, W.E., et al., Resolving the Grain Boundary and Lattice Impedance of Hot?Pressed Li7La3Zr2O12 Garnet Electrolytes. ChemElectroChem, 2014. 1(2): p. 375-378.
70. Cheng, L., et al., Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS applied materials & interfaces, 2015. 7(3): p. 2073-2081.
71. Ren, Y., et al., Effects of Li source on microstructure and ionic conductivity of Al-contained Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 ceramics. Journal of the European Ceramic Society, 2015. 35(2): p. 561-572.
72. Tang, Y., et al., Effects of Li2O-Al2O3-SiO2 system glass on the microstructure and ionic conductivity of Li7La3Zr2O12 solid electrolyte. Materials Letters, 2017. 193: p. 251-254.
73. Xu, B., et al., Li3PO4-added garnet-type Li6. 5La3Zr1. 5Ta0. 5O12 for Li-dendrite suppression. Journal of Power Sources, 2017. 354: p. 68-73.
74. Tan, J. and A. Tiwari, Synthesis of cubic phase Li7La3Zr2O12 electrolyte for solid-state lithium-ion batteries. Electrochemical and Solid-State Letters, 2011. 15(3): p. A37-A39.
75. Ahn, C.-W., et al., Electrochemical properties of Li7La3Zr2O12-based solid state battery. Journal of Power Sources, 2014. 272: p. 554-558.
76. Liu, T., et al., Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6. 75La3Zr1. 75Ta0. 25O12 electrolyte: Interfacial resistance. Journal of Power Sources, 2016. 324: p. 349-357.
77. Van Den Broek, J., S. Afyon, and J.L. Rupp, Interface?Engineered All?Solid?State Li?Ion Batteries Based on Garnet?Type Fast Li+ Conductors. Advanced Energy Materials, 2016. 6(19).
78. Yonemoto, F., et al., Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. Journal of Power Sources, 2017. 343: p. 207-215.
79. Kazyak, E., et al., Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12. Chemistry of Materials, 2017. 29(8): p. 3785-3792.
80. Park, K., et al., Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12. Chemistry of Materials, 2016. 28(21): p. 8051-8059.
81. Zhu, Y., X. He, and Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS applied materials & interfaces, 2015. 7(42): p. 23685-23693.
82. Richards, W.D., et al., Interface stability in solid-state batteries. Chemistry of Materials, 2015. 28(1): p. 266-273.
83. Tsai, C.-L., et al., Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS applied materials & interfaces, 2016. 8(16): p. 10617-10626.
84. Kim, H.W., et al., Hybrid solid electrolyte with the combination of Li 7 La 3 Zr 2 O 12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. Journal of Materials Chemistry A, 2016. 4(43): p. 17025-17032.
85. Han, X., et al., Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature materials, 2017. 16(5): p. 572.
86. Li, Y., et al., Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium?Ion Batteries. Angewandte Chemie International Edition, 2017. 56(3): p. 753-756.
87. Zhou, W., et al., Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. Journal of the American Chemical Society, 2016. 138(30): p. 9385-9388.
88. Chan, C.K., T. Yang, and J.M. Weller, Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries. Electrochimica Acta, 2017.
89. Croce, F., et al., Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998. 394(6692): p. 456.
90. Oxide, B.P., Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells Stergiopoulos, Thomas; Arabatzis, Ioannis M.; Katsaros, Georgios; Falaras, Polycarpos. Nano Letters, 2002. 2(11): p. 1259-1261.
91. Yuan, C., et al., Enhanced electrochemical performance of poly (ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework. Journal of Power Sources, 2013. 240: p. 653-658.
92. Huo, H., et al., Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. Journal of Power Sources, 2017. 372: p. 1-7.
93. Keller, M., et al., Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P (EO) 15LiTFSI. Journal of Power Sources, 2017. 353: p. 287-297.
94. Jiang, Z., B. Carroll, and K. Abraham, Studies of some poly (vinylidene fluoride) electrolytes. Electrochimica Acta, 1997. 42(17): p. 2667-2677.
95. Choi, S.W., et al., An electrospun poly (vinylidene fluoride) nanofibrous membrane and its battery applications. Advanced Materials, 2003. 15(23): p. 2027-2032.
96. Jeddi, K., M. Ghaznavi, and P. Chen, A novel polymer electrolyte to improve the cycle life of high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2013. 1(8): p. 2769-2772.
97. Raghavan, P., et al., Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. Journal of Power Sources, 2011. 196(16): p. 6742-6749.
98. Wang, H., H. Huang, and S.L. Wunder, Novel microporous poly (vinylidene fluoride) blend electrolytes for lithium?ion batteries. Journal of the Electrochemical Society, 2000. 147(8): p. 2853-2861.
99. Jeong, H.-S., et al., Effect of phase inversion on microporous structure development of Al2O3/poly (vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. Journal of Power Sources, 2010. 195(18): p. 6116-6121.
100. Yoshima, K., Y. Harada, and N. Takami, Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries. Journal of Power Sources, 2016. 302: p. 283-290.
101. Kato, T., et al., Preparation of thick-film electrode-solid electrolyte composites on Li7La3Zr2O12 and their electrochemical properties. Journal of Power Sources, 2016. 303: p. 65-72.
102. Choi, J.-H., et al., Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. Journal of Power Sources, 2015. 274: p. 458-463.
103. Chen, R.-J., et al., Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. ACS applied materials & interfaces, 2017. 9(11): p. 9654-9661.
104. Cheng, S.H.-S., et al., Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochimica Acta, 2017. 253: p. 430-438.
105. Chen, L., et al., PEO/Garnet Composite Electrolytes for Solid-State Lithium Batteries: from “Ceramic-in-Polymer” to “Polymer-in-Ceramic”. Nano Energy, 2017.
106. Zheng, J., M. Tang, and Y.Y. Hu, Lithium Ion Pathway within Li7La3Zr2O12?Polyethylene Oxide Composite Electrolytes. Angewandte Chemie, 2016. 128(40): p. 12726-12730.
107. Rosso, M., et al., Onset of dendritic growth in lithium/polymer cells. Journal of power sources, 2001. 97: p. 804-806.
108. Ban, X., et al., A High-Performance and Durable Poly (ethylene oxide)-Based Composite Solid Electrolyte for All Solid-State Lithium Battery. The Journal of Physical Chemistry C, 2018. 122(18): p. 9852-9858. |