博碩士論文 105324077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:150 、訪客IP:3.139.90.131
姓名 古若妘(Ruo-Yun Gu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 新穎奈米球微影術製備規則有序一維矽單晶奈米結構陣列之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 一維矽基奈米結構因其獨特的光學性質及應用潛力使其在先進光電領域中受到很大的關注。本研究中,我們成功提出一種全新的製程,結合氧氣電漿修飾奈米球微影術及金催化蝕刻,成功於室溫下在(001)矽基材上製備出規則準直排列且深度、長度、間距可控之一維矽奈米洞及矽奈米管。在不同實驗條件下所製備出之準直矽奈米洞及矽奈米管陣列,其表面形貌、晶體結構及形成機制皆有系統地透過原子力顯微鏡、掃描式電子顯微鏡及穿透式電子顯微鏡進行探討。而藉由紫外光-可見光-近紅外光的量測分析,可清楚地發現研究中所製備出之矽奈米洞及矽奈米管陣列,在400到1700奈米的波長範圍中具有優異的光吸收性質。本研究藉由調控奈米球遮罩之直徑及金催化蝕刻條件,可準確的控制矽奈米洞及矽奈米管之直徑、長度及深度,並證實了這裡所提出之製備一維有序矽基中空奈米結構之新穎方法是可行的。
摘要(英) One-dimensional (1D) silicon-based nanostructures have recently attracted remarkable attention due to their unique optical properties and potential applications in advanced optoelectronics. In this study, we show the successful fabrication of periodic arrays of vertically-aligned, depth-, length-, spacing-controllable 1D Si nanoholes and Si nanotubes on (001)Si substrates at room temperature using our proposed new approach, which is based on the O2 plasma modified nanospherre lithography and Au nanodisk-catalyzed etching process. The surface morphology, crystal structure, and formation kinetics and mechanism of the vertical Si nanohole and Si nanotube arrays produced under different experimental conditions have been systematically investigated by atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. UV-Vis-IR spectroscopic measurements clearly revealed that the produced Si nanohole and Si nanotube arrays exhibited excellent broadband absorption properties in the wavelength range of 400-1700nm. Since the diameter and length (or depth) of the Si nanohole and Si nanotube can be readily controlled by adjusting the diameter of the colloidal nanosphere template and the Au-catalyzed etching conditions, the new strategy proposed in this study makes the fabrication of a variety of periodic arrays of 1D Si-based hollow nanostructures viable.
關鍵字(中) ★ 矽
★ 奈米球微影術
★ 金催化蝕刻
關鍵字(英)
論文目次 目錄
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 矽基奈米結構之表面性質 2
1-2-1 水滴接觸角之相關理論 3
1-3可見光-近紅外光光偵測元件 5
1-3-1 矽晶材料於可見光波段之應用 5
1-3-2 紅外線感測元件 5
1-3-3 矽晶奈米結構於紅外光波段之應用 6
1-4 規則有序矽單晶奈米結構陣列之製備 7
1-4-1 奈米球微影術結合金屬催化蝕刻法製備矽單晶奈米柱 7
1-4-2 矽單晶奈米洞陣列應用於紅外線偵測之研究 8
1-4-3 矽單晶奈米管應用於光偵測之研究 8
1-5 研究動機及目標 9
第二章 實驗步驟及儀器設備 11
2-1 實驗步驟 11
2-1-1 矽晶基材使用前處理 11
2-1-2 奈米球陣列模板製備 12
2-1-3金屬催化蝕刻製備矽單晶奈米洞陣列 12
2-1-4金屬催化蝕刻製備矽單晶奈米柱陣列 13
2-1-5金屬催化蝕刻製備矽單晶奈米管陣列 13
2-2試片分析 14
2-2-1 掃描式電子顯微鏡 14
2-2-2 原子力顯微鏡 14
2-2-3影像式水滴接觸角量測儀 15
2-2-4 可見光-近紅外光光譜儀 15
第三章 結果與討論 16
3-1 奈米球微影術結合選擇性蝕刻製備金奈米盤陣列 16
3-2 奈米球微影術結合金屬催化蝕刻製備矽單晶奈米洞陣列 18
3-3 奈米球微影術結合金屬催化蝕刻製備矽單晶奈米柱陣列 19
3-4 奈米球微影術結合金屬催化蝕刻製備矽單晶奈米管陣列 20
3-5 可見光-近紅外光光譜量測分析 21
第四章 結論與未來展望 28
參考文獻 30
圖目錄 35
參考文獻 1. D. M. Newman, M. L. Wears, M. Jollie and D. Chooand, "Fabrication and Characterization of Nano-particulate PtCo Media for Ultra-high Density Perpendicular Magnetic Recording," Nanotechnology 18 (2007) 205-301. 2. T. Sondergaard and S. I. Bozhevolnyi, "Metal Nano-strip Optical Resonators," Opt. Express 15 (2007) 4198-4204. 3. S. J. Ku, G. C. Jo, C. H. Bak, S. M. Kim and Y. R. Shin, "Fabrication and Photovoltaic Property of Ordered Macroporous Silicon," Appl. Phys. Lett. 95 (2009) 143-119. 4. S. J. Ku, G. C. Jo, C. H. Bak, S. M. Kim and Y. R. Shin., "Highly Ordered Freestanding Titanium Oxide Nanotube Arrays Using Si-containing Block Copolymer Lithography and Atomic Layer deposition," Nanotechnology 24 (2013) 085301. 5. Y. Lu and A. Lal, "High-efficiency Ordered Silicon Nano-conical-frustum Array Solar Cells by Self-powered Parallel Electron Lithography," Nano Lett. 10 (2010) 4651-4656. 6. Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y . Lee and I. N. Lin, "Stacked Silicon Nanowires with Improved Field Enhancement Factor," ACS Appl. Mater. Inter. 2 (2010) 331-334. 7. E. Johlin, A. Al. Obeidi, G. Nogay, M. Stuckelberger, T. Buonassisi and J. C. Grossman, "Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics," ACS Appl. Mater. Inter. 8 (2016) 15169-15176. 8. K. Karki, Y. Zhu, Y. Liu, C. F. Sun, L. Hu, Y. H. Wang, C. Wang, and J. Cumings, "Hoop-strong Nanotubes for Battery Electrodes," ACS Nano. 7 (2013) 8295–8302. 9. A. Khosropour and A. Sazonov, "Microcrystalline Silicon Photodiode For Large Area NIR Light Detection Applications " IEEE Electr. Device L. 38 (2017) 225 - 227. 10. H. Wu, G. Chan, J. W. Choi, I. Ryu and Y . Yao, "Stable Cycling of Double-walled Silicon Nanotube Battery Anodes Through Solid-electrolyte Interphase Control," Nat. Nanotechnol. 7 (2012) 310-315. 11. Q. Li, M. Zheng, B. Zhang, C. Zhu, F. Wang, J. Song, M. Zhong, L. Ma and W. Shen, "InP Nanopore Arrays for Photoelectrochemical Hydrogen Generation," Nanotechnology 27 (2016) 075704. 12. H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang and J. Xu, "Growth of Amorphous Silicon Nanowires via a Solid–liquid–solid Mechanism," Chem. Phys. Lett. 323 (2000) 224-228. 13. Y . Yao, F. Li and S. T. Lee, "Oriented Silicon Nanowires on Silicon Substrates
31


from Oxide-assisted Growth and Gold Catalysts," Chem. Phys. Lett. 406 (2005) 381385. 14. M. Law, J. Goldberger and P. Yang, "Semiconductor Nanowires and Nanotubes," Annu. Rev. Mater. Res. 34 (2004) 83-122. 15. A. Convertino, M. Cuscuna and F. Martelli., "Silicon Nanotubes from Sacrificial Silicon Nanowires: Fabrication and Manipulation via Embedding in Flexible Polymers," Nanotechnology 23 (2012) 305602. 16. J. V. Plestina, V. G. Dubrovskii, G. Tutuncuo?lu, H. Potts, R. Ricca, F. Meyer, F. Matteini, J. B. Leran and A. F. i Morral, "Molecular Beam Epitaxy of InAs Nanowires in SiO2 Nanotube Templates: Challenges and Prospects for Integration of III-Vs on Si," Nanotechnology 27 (2016) 455601. 17. L. Hong, Rusli, X. Wang, H. Zheng, J. Wang, H. Wang and H. Yu "Optical Absorption Enhancement in a Si Nanohole Structure with Hexagonal Unit Cell for Solar Cell Application," Nanotechnology 25 (2014) 415303. 18. Y. Y. Kim, H. J. Kim, J. H. Jeong, J. Lee, J. H. Choi, J. Y. Jung, J. H. Lee, H. Cheng, K. W. Lee and D. G. Choi, "Facile Fabrication of Silicon Nanotube Arrays and Their Application in Lithium-Ion Batteries?" Adv. Eng. Mater. 18 (2016) 1349-1353. 19. H. Jeong, H. Song, Y. Pak, I. K. Kwon and K. Jo, "Enhanced Light Absorption of Silicon Nanotube Arrays for Organic/Inorganic Hybrid Solar Cells," Adv. Mater. 26 (2014) 3445-3450. 20. Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang and P. Gao, "Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-based Hybrid Heterojunction Solar Cells," J. Phys. Chem. C. 117 (2013) 11968-11976. 21. Y. Zhang, H. Wang, Z. Liu, B. Zou and C. Duan., "Optical Absorption and Photoelectrochemical Performance Enhancement in Si Tube Array for Solar Energy Harvesting Application," Appl. Phys. Lett. 102 (2013) 163906. 22. "http://www.ecaftech.com/cht/Skynet-SGG.html." 23. "http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Research_ Development/publish-102.htm." 24. A. Rogalski, "Recent Progress in Infrared Detector Technologies," Infrared Phys. Techn. 54 (2011) 136-154. 25. A. Rogalski, "History of Infrared Detectors," Opto. Electron Rev. 20 (2012) 279– 308. 26. H. Yang, X. Liu, J. Gao, X. Wang, H. Liu and Z. Zhang, "An Extending Broadband Near-infrared Absorption of Si-based Deep-trench Microstructures," Opt. Commun. 392 (2017) 59-63. 27. B. Kang, Y. Cai and L. Wang, "Improvement of External Quantum Efficiency of Silicide Schottky-barrier Detectors in the 3 to 5?μm Waveband with Subwavelength
32


grating Incident Plane," Opt. Eng. 55 (2016) 047-103. 28. P. A. Hernley, S. A. Chavez, J. P. Quinn and S. Linic, "Engineering the Optical and Catalytic Properties of Co-Catalyst/Semiconductor Photocatalysts," ACS Photonics 4 (2017) 979-985. 29. J. Ji and X. Pei, "Large-area Ordered P-type Si Nanohole Arrays as Photocathode for Highly Efficient Hydrogen Production by Photoelectrochemical Water Splitting," J. Mater. Sci-Mater. El. 27 (2016) 5468-5474. 30. X. Xu, Yang, Q. Wattanatorn, N. Zhao, C. Chiang, N. Chiang , S. J. Jonas, and P. S. Weiss, "Multiple-patterning Nanosphere Lithography for Fabricating Periodic Three-dimensional Hierarchical Nanostructures," ACS Nano. 11 (2017) 10384-10391. 31. J. Wang, G. Duan, Y. Li, G. Liu and W. Cai, "Wet Etching-assisted Colloidal Lithography: A General Strategy Toward Nanodisk and Nanohole Arrays on Arbitrary Substrates," ACS Appl. Mater. Inter. 6 (2014) 9207-9213. 32. S. Yim, S. Jeon, J. M. Kim, K. M. Baek, G. H. Lee, H. Kim , J. Shin, and Y. S. Jung, "Transferrable Plasmonic Au Thin Film Containing Sub-20 nm Nanohole Array Constructed via High-resolution Polymer Self-assembly and Nanotransfer Printing," ACS Appl. Mater. Inter. 10 (2018) 2216-2223. 33. H. Li, J. Low, K. S. Brown and N. Wu, "Large-area Well-ordered Nanodot Array Pattern Fabricated With Self-Assembled Nanosphere Template " IEEE Sens. J. 8 (2008) 880-884. 34. K. Q. Peng, X. Wang, L. Li, X. L. Wu and S.T. Lee, "High-Performance Silicon Nanohole Solar Cells," J. Am. Chem. Soc. 20 (2010) 6872-6873. 35. Z. Huang, H. Fang and J. Zhu, "Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density," Adv. Mater. 19 (2007) 744-748. 36. D. Brodoceanu, R. Elnathan, B. P. Simon, B. Delalat, T. Guinan, E. Kroner, N. H. Voelcker, and T. Kraus, "Dense Arrays of Uniform Submicron Pores in Silicon and Their Applications," ACS Appl. Mater. Inter. 7 (2015) 1160-1169. 37. N. Verplanck, Y. Coffinier, V. Thomy and R. Boukherroub, "Wettability Switching Techniques on Superhydrophobic Surfaces," Nanoscale Res. Lett. 2 (2007) 577-596. 38. B. Bhushan, "Characterization of Rose Petals and Fabrication and Characterization of Superhydrophobic Surfaces with High and Low Adhesion," Springer (2016) 213. 39. M. Callies and D. Quere, "On Water Repellency," Soft Matter 1 (2005) 55. 40. C. Xie, L. B. Luo, L. H. Zeng, L. Zhu, J. J Chen, B. Nie, J. G. Hu, Q. Li, C. Y. Wu, L. Wanga and J. S. Jie, "p-CdTe Nanoribbon/n-silicon Nanowires Array Heterojunctions: Photovoltaic Devices and Zero-power Photodetectors," Cryst. Eng. Comm. 14 (2012) 7222. 41. F. D. Angelis, M. Malerba, M. Patrini, E. Miele and G. Das, "3D Hollow
33


Nanostructures as Building Blocks for Multifunctional Plasmonics," Nano Lett. 13 (2013) 3553-3558. 42. H. Jeong, C. Bok, S. H. Lee and S. Yoo, "Fabrication of Vertical Silicon Nanotube Array Using Spacer Patterning Technique and Metal-assisted Chemical Etching " IEEE T. Nanotechnol. 16 (2017) 130-134. 43. B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim and H. H. Cho, "Broadband Radiative Energy Absorption Using a Silicon Nanowire Forest with Silver Nanoclusters for Thermal Energy Conversion," Int. J. Heat Mass Tran. 82 (2015) 267-272. 44. C. Xie, B. Nie, L. Zeng, F. X. Liang, M. Z. Wang, L. Luo, M. Feng, Y. Yu, C.Y. Wu, Y. Wu, and S. H. Yu, "CoreShell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-driven Photodetectors," ACS Nano. 8 (2014) 4015–4022 45. H. J. Syu, S.C. Shiu and C. F. Lin, "Silicon Nanowire/Organic Hybrid Solar Cell with Efficiency of 8.40%," Sol. Energ. Mat. Sol. C. 98 (2012) 267-272. 46. E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan and H. E. Unalan, "Silicon Nanowire Network Metal-semiconductor-metal Photodetectors," Appl. Phys. Lett. 103 (2013) 083114. 47. B. Y. Tsaur, C. K. Chen and J. P. Mattia, "PtSi Schottky-Barrier Focal Plane Arrays for Multispectral Imaging in Ultraviolet, Visible, and Infrared Spectral Bands " IEEE Electr. Device L. 11 (1990) 162-164. 48. D. Zhang, X. Qin, J. Chen and W. Shi, "Controlled Fabrication of Silicon Nanostructures by the Nanosphere Lithography: Application for Low Reflection Over Wide Spectrum," J. Nanosci. Nanotechno. 17 (2017) 4989-4994. 49. K. Y. Wang, C. H. Chou, C. Y. Liao, Y. R. Li and H. C. Cheng, "Densification Effects of The Carbon Nanotube Pillar Array on Field-emission Properties," Jpn. J. Appl. Phys. 55 (2016) 06-12. 50. J. Jiangabc, H. Fang, X. Zhang, K. He, Z. Wei, X. Pang and J. Dai, "Electrochemical Synthesis of Aligned Amorphous Carbon Nanotubes/TiO2 Nanotubes Heterostructured Arrays and Its Field Emission Properties," Diam. Relat. Mater. 74 (2017) 205-211. 51. E. Edri, S. Aloni and H. Frei, "Fabrication of Core-shell Nanotube Array for Artificial Photosynthesis Featuring an Ultrathin Composite Separation Membrane," ACS Nano. 12 (2018) 533-541. 52. J. K. Chen, W. T. Chen, C. C. Cheng, C. C. Yu and J. P. Chu., "Metallic Glass Nanotube Arrays: Preparation and Surface Characterizations," Mater. Today 21 (2018) 178-185. 53. R. Q. Zhang, Y. Lifshitz and S. T. Lee, "Oxide-assisted Growth of Semiconduction Nanowires," Adv. Mater. 15 (2003) 635.
指導教授 鄭紹良 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明