參考文獻 |
[1] D. M. Newman, M. L. Wears, M. Jollie, and D. Choo, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording ”, Nanotechnology 18 (2007) 205301.
[2] T. Sondergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators ”, Opt. Express 15 (2007) 4198-4204.
[3] K.Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and photovoltaic property of ordered macroporous silicon ”, Appl. Phys. Lett. 95 (2009) 143119.
[4] Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells ”, PNAS 107 (2010) 17491-17496.
[5] C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture ”, Appl. Phys. Lett. 91 (2007) 061116.
[6] Y. Lu and A. Lal, “High-ef?ciency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography ”, Nano Lett. 10 (2010) 4651-4656.
[7] J. A. Ratches, R. H. Vollmerhausen, and R. G. Driggers, “Target acquisition performance modeling of infrared imaging systems: past, present, and future ”, IEEE Sens. J. 1 (2001) 31-40.
[8] I. Zafar, U. Zakir, I. Romanenko, R. M. Jiang, and E. Edirisinghe, “Human silhouette Extraction on FPGAs for infrared night vision military surveillance ”, PACCS (2010).
[9] R. Vadivambal and D. S. Jayas, “Applications of thermal imaging in agriculture and food industry - A Review ”, Food Bioprocess Tech. 4 (2011) 186-199.
[10] H. Song, G. Zhou, M. Di, and P. Ren, “An infrared non-contact framework for monitoring the liquid levels in natural gas pipelines ”, Int. J. Oil Gas Coal T. 15 (2017) 317-327.
[11] K. D. Shepherd and M. G. Walsh, “Infrared spectroscopy-enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries ”, J. Near Infrared Spec. 15 (2007) 1-191.
[12] E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine ”, Physiol. Meas. 33 (2012) R33-R46.
[13] R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bu‥low, and M. Kjar, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease ”, Scand. J. Med. Sci. Spor. 11 (2001) 213-222.
[14] B.B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review ” Infrared Phys. Techn. 55 (2012) 221-235.
[15] http://www.doorauto.tw/感應器-二合一感應器-雷達開門紅外線安全防夾/
[16] http://www.stately.com.tw/Product-206.asp
[17] A. Rogalski, “Recent progress in infrared detector technologies ”, Infrared Phys. Techn. 54 (2011) 136-154.
[18] A. Rogalski, “History of infrared detectors ”, Opto-Electron. Rev. 20 (2012) 279-308.
[19] https://www.stockfeel.com.tw/感測元件-目前發展/
[20] G.P. Weckler, “Operation of p-n Junction Photodetectors in a Photon Flux Integrating Mode “, IEEE J. Solid-St. Circ. 2 (1967) 65-73.
[21] E. Monroyyz, E. Munozy, F. J. Sanchezy, F. Calley, E. Callejay, B. Beaumontx, P. Gibartx, J. A. Munozk, and F. Cussok, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications ”, Semicond. Sci. Tech. 13 (1998) 1042-1046.
[22] A. P. Godse and U. A. Bakshi Electronic Devices. 2009. 2-3.
[23] H. J. Syua, S. C. Shiua, and C. F. Lin, “Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%”, Sol. Energ. Mat. Sol. C. 98 (2012) 267-272.
[24] C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. H. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetector ”, ACS Nano 8 (2014) 4015-4022.
[25] D. Wua, Z. Loua, Y. Wanga, Z. Yaob, T. Xua, Z. Shia, J. Xua,Y. Tiana, X. Lia, and Y. H. Tsangc, ” Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction ”, Sol. Energ. Mat. Sol. C. 182 (2018) 272-280.
[26] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim, and H. H. Cho, “Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion ”, Int. J. Heat Mass Tran. 82 (2015) 267-272.
[27] W. Schottky, “Halbleitertheorie der Sperrschicht ”, Naturwissenschaften 26 (1938) 843.
[28] N. F. MOTT, “Note on the contact between a metal and an insulator or semi-conductor ”, Math. Proc. Cambridge 34 (1938) 568-572.
[29] B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications., 1984. 2-8.
[30] J. Bardeen, “Surface states and rectification at a metal semi-conductor contact ”, Phys. Rev. 71 (1947) 717-727.
[31] A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor systems ”, J. Appl. Phys. 36 (1965) 3212-3220.
[32] .V. Heine, “Theory of Surface States ”, Phys. Rev. 138 (1965) 1689-1696.
[33] J. L. Freeouf and J. M. Woodall, “Schottky barriers: An effective work function model ”, Appl. Phys. Lett. 39 (1981) 177-179.
[34] R. T. Tung, “Chemical bonding and fermi level pinning at metal-semiconductor interfaces ”, Phys. Rev. Lett. 84 (2000) 6078-6081.
[35] F. Zhang, S. Niu, W. Guo, G. Zhu,Y. Liu, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire ”, ACS Nano 7 (2013) 4537-4544.
[36] https://en.wikipedia.org/wiki/Photodiode
[37] B. Kang, Yi Cai, and L. Wang, “Improvement of external quantum efficiency of silicide Schottky-barrier detectors in the 3 to 5 μm waveband with subwavelength-grating incident plane ”, Opt. Eng. 55 (2016) 047103.
[38] B. Y. Tsaur, C. K. Chen, and J. P. Mattia, “PtSi Schottky-barrier focal plane arrays for multispectral imaging in ultraviolet, visible, and infrared spectral bands ”, IEEE Electr. Dev. L. 11 (1990) 162-164.
[39] S. Roy, K. Midya, S. P. Duttagupta, and D. Ramakrishnan, “Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation ”, J. Appl. Phys. 116 (2014) 124507.
[40] S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications ”, Appl. Phys. Lett. 92 (2008) 081103.
[41] Y. T. Wu, C. W. Huang, C. H. Chiu, C. F. Chang, J. Y. Chen, T. Y. Lin, Y. T. Huang, K. C. Lu, P. H. Yeh, and W. W. Wu, “Nickel/platinum dual silicide axial nanowire heterostructures with excellent photosensor applications”, Nano Lett. 16 (2016) 1086-1091.
[42] P. Lv, X. Zhang, X. Zhang, W. Deng, and J. Jie, “High-sensitivity and fast-response graphene/crystalline silicon schottky junction-based near-IR photodetectors ”, IEEE Electr. Device L. 34 (2013) 1337-1339.
[43] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L.Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications ”, Nat. Mater. 9 (2010) 239-244.
[44] L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications ”, Nano Lett. 7 (2007) 3249-3252.
[45] H. Jeong, H. Song, Y. Pak, K. Kwon, K. Jo, H. Lee, and G. Y. Jung, “Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells ”, Adv. Mater. 26 (2014) 3445-3450.
[46] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Yi Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays ”, Nano Lett. 9 (2009) 279-282.
[47] F. L. Gonzalez, D. E. Morse, and M. J. Gordon, “Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications ”, Opt. Lett. 39 (2014) 13-16.
[48] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells ”, Appl. Phys. Lett. 91 (2007) 233117.
[49] K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells ”, Appl. Phys. Lett. 92 (2008) 163103.
[50] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee , “Electron field emission from silicon nanowires ”, Appl. Phys. Lett. 75 (1999) 1700-1702.
[51] U. Raya, D. Banerjeeb, B. Dasc, N.S. Dasd, S.K. Sinhaa, and K.K. Chattopadhyayc, “Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires ”, Mater. Res. Bull. 97 (2018) 232-237.
[52] G. Larrieu, Y. Guerfi, X.L. Han, and N. Clement, “Sub-15 nm gate-all-around field effect transistors on vertical silicon nanowires ”, Solid-State Electron. 130 (2017) 9-14.
[53] J. Y. Kim, J. H.Ahn, D.I. Moon, T. J. Park, S. Y. Lee, and Y. K. Choi, “Multiplex electrical detection of avian influenza andhuman immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor ”, Biosens. Bioelectron. 55 (2014) 162-167.
[54] G. J. Zhanga, M. J. Huanga, J. J. Anga, E. T. Liub, and K. V. Desai, “Self-assembled monolayer-assisted silicon nanowire biosensor for detection of protein–DNA interactions in nuclear extracts from breast cancer cell ”, Biosens. Bioelectron. 26 (2011) 3233-3239.
[55] J. F. Hsu, B. R. Huang, C. S. Huang, and H. L. Chen, “Silicon nanowires as pH sensor ”, Jpn. J. Appl. Phys. 44 (2005) 2626-2629.
[56] K. Q. Peng, X. Wang, and S. T. Lee, “Gas sensing properties of single crystalline porous silicon nanowires ”, Appl. Phys. Lett. 95 (2009) 243112.
[57] M. Hetzel, A. Lugstein, C. Zeiner, T. Wojcik, P. Pongratz, and E. Bertagnolli, “Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst ”, Nanotechnology 22 (2011) 395601.
[58] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu , Z.H. Xi b, and S.Q. Feng, “Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism ”, Chem. Phys. Lett. 323 (2000) 224-228.
[59] Y. Yao, F. Li, and S. T. Lee, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts ”, Chem. Phys. Lett. 406 (2005) 381-385.
[60] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner, and A. Waag, “Production of vertical nanowire resonators by cryogenic?ICP–DRIE ”, Microsyst. Technol. 20 (2014) 759-767.
[61] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, and C. Y. Hsu, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching ”, Curr. Appl. Phys. 13 (2013) 717-724.
[62] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gosele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching ”, Nano Lett. 8 (2008) 3046-3051.
[63] Z. P. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, Length, and Density ”, Adv. Mater. 19 (2007) 744-748.
[64] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Leea, “Ordered silicon nanowire arrays via nanosphere lithography and metalinduced etching ”, Appl. Phys. Lett. 90 (2007) 163123.
[65] H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of fresnel reflection ”, Langmuir 26 (2010) 12855.
[66] L. Li, Y. Fang, C. Xu, Y. Zhao, K. Wu, C. Limburg, P. Jiang, and K. J. Ziegler, “Controlling the geometries of Si nanowires through tunable nanosphere lithography ”, ACS Appl. Mater. Inter. 9 (2017) 7368-7375.
[67] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching ”, Appl. Phys. Lett. 93 (2008) 133109.
[68] M. K. Dawood1, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires ”, Nanotechnology 21 (2010) 205305.
[69] Y. J. Hung, S. L. Lee, K. C. Wu, Y. Tai, and Y. T. Pan, “Antireflective silicon surface with verticalaligned silicon nanowires realized by simple wet chemical etching processes ”, Opt. Express 19 (2011) 15792-15802.
[70] H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping ”, J. Mater. Chem. A 1 (2013) 9942-9946.
[71] F. Teng, N. Li, D. Xu, D. Y. Xiao, X. G. Yang, and N. Lu, “Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching ”, Nanoscale 9 (2017) 449-453.
[72] B. P. Azeredo, J. Sadhu, J. Ma, K. Jacobs, J .Kim, K. Lee, J. H. Eraker, X. Li, S .Sinha, N. Fang, P. Ferreira1, and K. Hsu, “Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching ”, Nanotechnology 24 (2013) 225305.
[73] Y. Xu, Y. Xuan, and X. Liu, “Design of nano/micro–structured surfaces for efficiently harvesting and managing full–spectrum solar energy ”, Sol. Energy 158 (2017) 504-510.
[74] E.H. Rhoderick, “Metal-semiconductor contacts ”, Solid-State Elect. De. 129 (1982).
[75] R. Kumar and S. Chand, “Fabrication and electrical characterization of nickel/p-Si Schottky diode at low temperature ”, Solid State Sci. 58 (2016) 115-121.
[76] Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance Green/Ultraviolet photodetector ”, Opt. Express 19 (2011) 6101-6108.
[77] C.Y. Wu, Z.Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, L.Wang, and L. B. Luo, “Core–shell silicon nanowire array-Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector ”, J. Mater. Chem. C 4 (2016) 10804-10811.
[78] C. Liu, H. Zhang, Z. Sun, K. Ding, J. Mao, Z. Shao, and J. Jie, “Topological insulator Bi2Se3 nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response ”, J. Mater. Chem. C 4 (2016) 5648-5055.
[79] J. Yao, Z. Zheng, J. Shao, and G. Yang, “Promoting Photosensitivity and Detectivity of the Bi/Si Heterojunction Photodetector by Inserting a WS2 Layer ”, ACS Appl. Mater. Inter. 7 (2015) 26701-26708.
[80] Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang, and Z. Zhao, “Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions ”, Small 10 (2014) 2345-2351.
[81] P. L. Ong, W. B. Euler, and I. A. Levitsky, “Carbon nanotube-Si diode as a detector of mid-infrared illumination ”, Appl. Phys. Lett. 96 (2010) 033106.
[82] X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection ”, Nano Lett. 13 (2013) 909-916. |