參考文獻 |
1. P.J. Morris, Transplantation - A medical miracle of the 20th century. New England Journal of Medicine, 2004. 351(26): p. 2678-2680.
2. J.R. Fuchs, B.A. Nasseri, and J.P. Vacanti, Tissue engineering: A 21st century solution to surgical reconstruction. Annals of Thoracic Surgery, 2001. 72(2): p. 577-591.
3. D. Huh, Y.S. Torisawa, G.A. Hamilton, H.J. Kim, and D.E. Ingber, Microengineered physiological biomimicry: Organs-on-Chips. Lab on a Chip, 2012. 12(12): p. 2156-2164.
4. J.H. Sung, M.B. Esch, J.M. Prot, C.J. Long, A. Smith, J.J. Hickman, and M.L. Shuler, Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab on a Chip, 2013. 13(7): p. 1201-1212.
5. G.A. Truskey, H.E. Achneck, N. Bursac, H.F. Chan, C.S. Cheng, C. Fernandez, S.M. Hong, Y. Jung, T. Koves, W.E. Kraus, K. Leong, L. Madden, W.M. Reichert, and X.H. Zhao, Design considerations for an integrated microphysiological muscle tissue for drug and tissue toxicity testing. Stem Cell Research & Therapy, 2013. 4: p. 5.
6. H. Vandenburgh, J. Shansky, F. Benesch-Lee, V. Barbata, J. Reid, L. Thorrez, R. Valentini, and G. Crawford, Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle & Nerve, 2008. 37(4): p. 438-447.
7. A. Khodabukus and K. Baar, Defined Electrical Stimulation Emphasizing Excitability for the Development and Testing of Engineered Skeletal Muscle. Tissue Engineering Part C-Methods, 2012. 18(5): p. 349-357.
8. A.D. Bach, J.P. Beier, J. Stern-Staeter, and R.E. Horch, Skeletal muscle tissue engineering. Journal of Cellular and Molecular Medicine, 2004. 8(4): p. 413-422.
9. L.G. Griffith and M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 2006. 7(3): p. 211-224.
10. R. Dennis, B. Smith, A. Philp, K. Donnelly, and K. Baar, Bioreactors for guiding muscle tissue growth and development. 2008.
11. <淺談組織工程.pdf>.
12. T. Ifukube, Artificial organs: recent progress in artificial hearing and vision. Journal of Artificial Organs, 2009. 12(1): p. 8-16.
13. R.J. Zienowicz and E. Karacaoglu, Implant-based breast reconstruction with allograft. Plastic and Reconstructive Surgery, 2007. 120(2): p. 373-381.
14. M.R. Roh, J.Y. Jung, and K.Y. Chung, Autologous Fat Transplantation for Depressed Linear Scleroderma-Induced Facial Atrophic Scars. Dermatologic Surgery, 2008. 34(12): p. 1659-1665.
15. R. Langer and J.P. Vacanti, TISSUE ENGINEERING. Science, 1993. 260(5110): p. 920-926.
16. J.M. Grasman, M.J. Zayas, R.L. Page, and G.D. Pins, Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomaterialia, 2015. 25: p. 2-15.
17. P.K. Law, T.G. Goodwin, Q.W. Fang, M.B. Deering, V. Duggirala, C. Larkin, J.A. Florendo, D.S. Kirby, H.J. Li, M. Chen, J. Cornett, L.M. Li, A. Shirzad, T. Quinley, T.J. Yoo, and R. Holcomb, CELL TRANSPLANTATION AS AN EXPERIMENTAL TREATMENT FOR DUCHENNE MUSCULAR-DYSTROPHY. Cell Transplantation, 1993. 2(6): p. 485-505.
18. S. Guettier-Sigrist, G. Coupin, S. Braun, J.M. Warter, and P. Poindron, Muscle could be the therapeutic target in SMA treatment. Journal of Neuroscience Research, 1998. 53(6): p. 663-669.
19. S.M. Goldman, B.E.P. Henderson, T.J. Walters, and B.T. Corona, Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury. Plos One, 2018. 13(1): p. 15.
20. B.T. Corona, C.L. Ward, H.B. Baker, T.J. Walters, and G.J. Christ, Implantation of In Vitro Tissue Engineered Muscle Repair Constructs and Bladder Acellular Matrices Partially Restore In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss Injury. Tissue Engineering Part A, 2014. 20(3-4): p. 705-715.
21. B.T. Corona, X.W. Wu, C.L. Ward, J.S. McDaniel, C.R. Rathbone, and T.J. Walters, The promotion of a functional fibrosis in skeletal muscle with volumetric muscle loss injury following the transplantation of muscle-ECM. Biomaterials, 2013. 34(13): p. 3324-3335.
22. V. Aarimaa, M. Kaariainen, S. Vaittinen, J. Tanner, T. Jarvinen, T. Best, and H. Kalimo, Restoration of myofiber continuity after transection injury in the rat soleus. Neuromuscular Disorders, 2004. 14(7): p. 421-428.
23. T.J. Burkholder, Mechanotransduction in skeletal muscle. Frontiers in Bioscience, 2007. 12: p. 174-191.
24. <宋信文 and 陳松青, 生醫材料簡介. 2003.pdf>.
25. K.J.L. Burg, S. Porter, and J.F. Kellam, Biomaterial developments for bone tissue engineering. Biomaterials, 2000. 21(23): p. 2347-2359.
26. N.K. Guimard, N. Gomez, and C.E. Schmidt, Conducting polymers in biomedical engineering. Progress in Polymer Science, 2007. 32(8-9): p. 876-921.
27. B.L. Guo and P.X. Ma, Conducting Polymers for Tissue Engineering. Biomacromolecules, 2018. 19(6): p. 1764-1782.
28. W.A. El-Said, C.H. Yea, J.W. Choi, and I.K. Kwon, Ultrathin polyaniline film coated on an indium-tin oxide cell-based chip for study of anticancer effect. Thin Solid Films, 2009. 518(2): p. 661-667.
29. M. Onoda, Y. Abe, and K. Tada, Experimental study of culture for mouse fibroblast used conductive polymer films. Thin Solid Films, 2010. 519(3): p. 1230-1234.
30. P.D. J.GORDON BETTS, EDDIE JOHNSON, JODY E. JOHNSON, Anatomy and Physiology 2013. 405-431.
31. C.P. Ordahl and N.M. Ledouarin, 2 MYOGENIC LINEAGES WITHIN THE DEVELOPING SOMITE. Development, 1992. 114(2): p. 339-353.
32. O. Pourquie, C.M. Fan, M. Coltey, E. Hirsinger, Y. Watanabe, C. Breant, P. FrancisWest, P. Brickell, M. TessierLavigne, and N.M. LeDouarin, Lateral and axial signals involved in avian somite patterning: A role for BMP4. Cell, 1996. 84(3): p. 461-471.
33. B. Christ, C. Schmidt, R.J. Huang, J. Wilting, and B. Brand-Saberi, Segmentation of the vertebrate body. Anatomy and Embryology, 1998. 197(1): p. 1-8.
34. K.S. Yun and B. Wold, Skeletal muscle determination and differentiation: Story of a core regulatory network and its context. Current Opinion in Cell Biology, 1996. 8(6): p. 877-889.
35. E.N. Olson and W.H. Klein, BHLH FACTORS IN MUSCLE DEVELOPMENT - DEAD LINES AND COMMITMENTS, WHAT TO LEAVE IN AND WHAT TO LEAVE OUT. Genes & Development, 1994. 8(1): p. 1-8.
36. T. Nielsen, Effect of uniaxial cyclic strain on the assembly and differentiation of mammalian myogenic precursors, in Health Science and Technology. 2012, Aalborg University. p. P1~P40.
37. P. Juffer, A.D. Bakker, J. Klein-Nulend, and R.T. Jaspers, Mechanical Loading by Fluid Shear Stress of Myotube Glycocalyx Stimulates Growth Factor Expression and Nitric Oxide Production. Cell Biochemistry and Biophysics, 2014. 69(3): p. 411-419.
38. B. Liu, M.J. Qu, K.R. Qin, H. Li, Z.K. Li, B.R. Shen, and Z.L. Jiang, Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophysical Journal, 2008. 94(4): p. 1497-1507.
39. C.J. Bettinger, R. Langer, and J.T. Borenstein, Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function. Angewandte Chemie-International Edition, 2009. 48(30): p. 5406-5415.
40. C. Tamiello, A.B.C. Buskermolen, F.P.T. Baaijens, J.L.V. Broers, and C.V.C. Bouten, Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments. Cellular and Molecular Bioengineering, 2016. 9(1): p. 12-37.
41. C.P. Pennisi, C.G. Olesen, M. de Zee, J. Rasmussen, and V. Zachar, Uniaxial Cyclic Strain Drives Assembly and Differentiation of Skeletal Myocytes. Tissue Engineering Part A, 2011. 17(19-20): p. 2543-2550.
42. G. Candiani, S.A. Riboldi, N. Sadr, S. Lorenzoni, P. Neuenschwander, F.M. Montevecchi, and S. Mantero, Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. Journal of Applied Biomaterials & Biomechanics, 2010. 8(2): p. 68-75.
43. P. Heher, B. Maleiner, J. Pruller, A.H. Teuschl, J. Kollmitzer, X. Monforte, S. Wolbank, H. Redl, D. Runzler, and C. Fuchs, A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia, 2015. 24: p. 251-265.
44. S. Rangarajan, L. Madden, and N. Bursac, Use of Flow, Electrical, and Mechanical Stimulation to Promote Engineering of Striated Muscles. Annals of Biomedical Engineering, 2014. 42(7): p. 1391-1405.
45. S.H. Kim, J.-H. Moon, J.H. Kim, S.M. Jeong, and S.-H. Lee, Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device. Biomedical Engineering Letters, 2011. 1(3): p. 199.
46. D. Huh, G.A. Hamilton, and D.E. Ingber, From 3D cell culture to organs-on-chips. Trends in Cell Biology, 2011. 21(12): p. 745-754.
47. N. Kushida, O. Yamaguchi, Y. Kawashima, H. Akaihata, J. Hata, K. Ishibashi, K. Aikawa, and Y. Kojima, Uni-axial stretch induces actin stress fiber reorganization and activates c-Jun NH2 terminal kinase via RhoA and Rho kinase in human bladder smooth muscle cells. Bmc Urology, 2016. 16: p. 7.
48. G. Candiani, S.A. Riboldi, N. Sadr, S. Lorenzoni, P. Neuenschwander, F.M. Montevecchi, and S. Mantero, Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. Journal of Applied Biomaterials and Biomechanics, 2010. 8(2): p. 68-75.
49. F. Michielin, E. Serena, P. Pavan, and N. Elvassore, Microfluidic-assisted cyclic mechanical stimulation affects cellular membrane integrity in a human muscular dystrophy in vitro model. RSC Advances, 2015. 5(119): p. 98429-98439.
50. M.-H. Wu, H.-Y. Wang, H.-L. Liu, S.-S. Wang, Y.-T. Liu, Y.-M. Chen, S.-W. Tsai, and C.-L. Lin, Development of high-throughput perfusion-based microbioreactor platform capable of providing tunable dynamic tensile loading to cells and its application for the study of bovine articular chondrocytes. Biomedical microdevices, 2011. 13(4): p. 789-798.
51. W. Zheng, B. Jiang, D. Wang, W. Zhang, Z. Wang, and X. Jiang, A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab on a Chip, 2012. 12(18): p. 3441-3450.
52. L.C. Kloth, Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. The international journal of lower extremity wounds, 2005. 4(1): p. 23-44.
53. W.W. Hu, Y.T. Hsu, Y.C. Cheng, C. Li, R.C. Ruaan, C.C. Chien, C.A. Chung, and C.W. Tsao, Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science & Engineering C-Materials for Biological Applications, 2014. 37: p. 28-36.
54. E. Serena, M. Flaibani, S. Carnio, L. Boldrin, L. Vitiello, P. De Coppi, and N. Elvassore, Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurological Research, 2008. 30(2): p. 207-214.
55. H.P. Wiesmann, M. Hartig, U. Stratmann, U. Meyer, and U. Joos, Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica Et Biophysica Acta-Molecular Cell Research, 2001. 1538(1): p. 28-37.
56. H.X. Xu, J. Zhang, Y.T. Lei, Z.Y. Han, D.M. Rong, Q. Xu, M. Zhao, and J. Tian, Low frequency pulsed electromagnetic field promotes C2C12 myoblasts proliferation via activation of MAPK/ERK pathway. Biochemical and Biophysical Research Communications, 2016. 479(1): p. 97-102.
57. G.X. Shi, M. Rouabhia, S.Y. Meng, and Z. Zhang, Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. Journal of Biomedical Materials Research Part A, 2008. 84A(4): p. 1026-1037.
58. A. Zengo, C. Bassett, G. Prountzos, R. Pawluk, and A. Pilla, In vivo effects of direct current in the mandible. Journal of dental research, 1976. 55(3): p. 383-390.
59. K. Donnelly, A. Khodabukus, A. Philp, L. Deldicque, R.G. Dennis, and K. Baar, A Novel Bioreactor for Stimulating Skeletal Muscle In Vitro. Tissue Engineering Part C-Methods, 2010. 16(4): p. 711-718.
60. H. Park, R. Bhallal, R. Saigal, M. Radisic, N. Watson, R. Langer, and G. Vunjak-Novakovic, Effects of electrical stimulation in C2C12 muscle constructs. Journal of Tissue Engineering and Regenerative Medicine, 2008. 2(5): p. 279-287.
61. K. Donnelly, A. Khodabukus, A. Philp, L. Deldicque, R.G. Dennis, and K. Baar, A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Engineering Part C: Methods, 2010. 16(4): p. 711-718.
62. H. Jo, M. Sim, S. Kim, S. Yang, Y. Yoo, J.H. Park, T.H. Yoon, M.G. Kim, and J.Y. Lee, Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomaterialia, 2017. 48: p. 100-109.
63. K. Ravikumar, G.P. Kar, S. Bose, and B. Basu, Synergistic effect of polymorphism, substrate conductivity and electric field stimulation towards enhancing muscle cell growth in vitro. Rsc Advances, 2016. 6(13): p. 10837-10845.
64. V. Hosseini, S. Gantenbein, I.A. Vizcarra, I. Schoen, and V. Vogel, Stretchable Silver Nanowire Microelectrodes for Combined Mechanical and Electrical Stimulation of Cells. Advanced Healthcare Materials, 2016. 5(16): p. 2045-2054.
65. I. Bernardeschi, F. Greco, G. Ciofani, A. Marino, V. Mattoli, B. Mazzolai, and L. Beccai, A soft, stretchable and conductive biointerface for cell mechanobiology. Biomedical Microdevices, 2015. 17(2): p. 11.
66. W.-W. Hu, Y.-T. Hsu, Y.-C. Cheng, C. Li, R.-C. Ruaan, C.-C. Chien, C.-A. Chung, and C.-W. Tsao, Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science and Engineering: C, 2014. 37: p. 28-36.
67. I.C. Liao, J.B. Liu, N. Bursac, and K.W. Leong, Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers. Cellular and Molecular Bioengineering, 2008. 1(2-3): p. 133-145.
68. X.-C. Guo, W.-W. Hu, S.H. Tan, and C.-W. Tsao, A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment. Biomedical microdevices, 2018. 20(2): p. 30.
69. Y.J. Wu, Y.H. Fang, H.C. Chi, L.C. Chang, S.Y. Chung, W.C. Huang, X.W. Wang, K.W. Lee, and S.L. Chen, Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One, 2014. 9(2): p. e88450.
70. I. Hoek, F. Tho, and W.M. Arnold, Sodium hydroxide treatment of PDMS based microfluidic devices. Lab on a Chip, 2010. 10(17): p. 2283-2285.
71. A. Forget, A.L.S. Burzava, B. Delalat, K. Vasilev, F.J. Harding, A. Blencowe, and N.H. Voelcker, Rapid fabrication of functionalised poly(dimethylsiloxane) microwells for cell aggregate formation. Biomaterials Science, 2017. 5(4): p. 828-836.
72. C.W. Tsao, X.C. Guo, and W.W. Hu, Highly stretchable conductive polypyrrole film on a three dimensional porous polydimethylsiloxane surface fabricated by a simple soft lithography process. Rsc Advances, 2016. 6(114): p. 113344-113351.
73. M.A. Chougule, S.G. Pawar, P.R. Godse, R.N. Mulik, S. Sen, and V.B. Patil, Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanoscience Letters, 2011. 1(01): p. 6.
74. Y. Fu, Y.-S. Su, and A. Manthiram, Sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. Journal of the Electrochemical Society, 2012. 159(9): p. A1420-A1424.
75. Q.F. Lu and Z.Y. Weng, SYNTHESIS AND CHARACTERIZATION OF POLYPYRROLE NANOPARTICLES VIA UNSTIRRED POLYMERIZATION. Acta Polymerica Sinica, 2009(6): p. 513-519.
76. P.R. Bidez, S. Li, A.G. MacDiarmid, E.C. Venancio, Y. Wei, and P.I. Lelkes, Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. Journal of Biomaterials Science, Polymer Edition, 2006. 17(1-2): p. 199-212.
77. A. Kumar, R. Murphy, P. Robinson, L. Wei, and A.M. Boriek, Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappa B transcription factor. Faseb Journal, 2004. 18(13): p. 1524-1535.
78. J.S. Otis, T.J. Burkholder, and G.K. Pavlath, Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Experimental Cell Research, 2005. 310(2): p. 417-425.
79. H. Bai, C.D. McCaig, J.V. Forrester, and M. Zhao, DC electric fields induce distinct preangiogenic responses in microvascular and macrovascular cells. Arteriosclerosis, thrombosis, and vascular biology, 2004. 24(7): p. 1234-1239.
80. A.M. Goldyn, B.A. Rioja, J.P. Spatz, C. Ballestrem, and R. Kemkemer, Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. Journal of Cell Science, 2009. 122(20): p. 3644-3651.
81. A.M. Greiner, H. Chen, J.P. Spatz, and R. Kemkemer, Cyclic Tensile Strain Controls Cell Shape and Directs Actin Stress Fiber Formation and Focal Adhesion Alignment in Spreading Cells. Plos One, 2013. 8(10): p. 9.
82. Y. Feng, X.-Y. Tian, P. Sun, Z.-P. Cheng, and R.-F. Shi, Simultaneous Study of Mechanical Stretch-Induced Cell Proliferation and Apoptosis on C2C12 Myoblasts. Cells Tissues Organs, 2018: p. 1-8.
83. J. Liu, J. Liu, J. Mao, X. Yuan, Z. Lin, and Y. Li, Caspase?3?mediated cyclic stretch?induced myoblast apoptosis via a Fas/FasL?independent signaling pathway during myogenesis. Journal of cellular biochemistry, 2009. 107(4): p. 834-844.
84. T.D. Brutsaert, T.P. Gavin, Z. Fu, E.C. Breen, K. Tang, O. Mathieu-Costello, and P.D. Wagner, Regional differences in expression of VEGF mRNA in rat gastrocnemius following 1 hr exercise or electrical stimulation. BMC physiology, 2002. 2(1): p. 8.
85. C. Sassoli, A. Frati, A. Tani, G. Anderloni, F. Pierucci, F. Matteini, F. Chellini, S.Z. Orlandini, L. Formigli, and E. Meacci, Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation. Plos One, 2014. 9(9): p. 10.
86. X. Yuan, D.E. Arkonac, P.-h.G. Chao, and G. Vunjak-Novakovic, Electrical stimulation enhances cell migration and integrative repair in the meniscus. Scientific reports, 2014. 4: p. 3674.
87. H. Jo, M. Sim, S. Kim, S. Yang, Y. Yoo, J.-H. Park, T.H. Yoon, M.-G. Kim, and J.Y. Lee, Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta biomaterialia, 2017. 48: p. 100-109.
88. K.-A. Chang, J.W. Kim, J. a Kim, S. Lee, S. Kim, W.H. Suh, H.-S. Kim, S. Kwon, S.J. Kim, and Y.-H. Suh, Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells. PLoS One, 2011. 6(4): p. e18738.
89. E. Hurtado, V. Cilleros, L. Nadal, A. Simo, T. Obis, N. Garcia, M.M. Santafe, M. Tomas, K. Halievski, C.L. Jordan, M.A. Lanuza, and J. Tomas, Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKC alpha and cPKC beta I. Frontiers in Molecular Neuroscience, 2017. 10: p. 22.
90. H. Fujita, T. Nedachi, and M. Kanzaki, Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Experimental Cell Research, 2007. 313(9): p. 1853-1865.
91. S. Ostrovidov, S. Ahadian, J. Ramon-Azcon, V. Hosseini, T. Fujie, S.P. Parthiban, H. Shiku, T. Matsue, H. Kaji, M. Ramalingam, H. Bae, and A. Khademhosseini, Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017. 11(2): p. 582-595. |