參考文獻 |
1. Wu, C.P., et al., Identification of baculoviral factors required for the activation of
enhancer-like polyhedrin upstream (pu) sequence. Virus Res, 2008. 138(1-2): p. 7-16.
2. Carstens, E.B. and L.A. Ball, Ratification vote on taxonomic proposals to the
International Committee on Taxonomy of Viruses (2008). Arch Virol, 2009. 154(7): p.
1181-8.
3. Pearson, M.N. and G.F. Rohrmann, Transfer, incorporation, and substitution of
envelope fusion proteins among members of the Baculoviridae, Orthomyxoviridae,
and Metaviridae (insect retrovirus) families. J Virol, 2002. 76(11): p. 5301-4.
4. Ayres, M.D., S.C. Howard, J.Kuzio, M. Lopez-Ferber, and R.D. Possee, The complete
DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology, 1994.
202(2): p. 586-605.
5. Volkman, L.E., and P.A. Goldsmith, Mechanism of Neutralization of Budded
Autographa californica Nuclear Polyhedrosis Virus by a Monoclonal Antibody:
Inhibition of Entry by Adsorptive Endocytosis Virology, 1985. 143: p. 185-195.
6. Volkman, L.E., M.D. Summers, and C.H. Hsieh, Occluded and nonoccluded nuclear
polyhedrosis virus grown in Trichoplusia ni: comparative neutralization comparative
infectivity, and in vitro growth studies. J Virol, 1976. 19(3): p. 820-32.
7. Smith, G.E., Summers, M.D., & Fraser, M.J., Production of human beta interferon in
insect cells infected with a baculovirus expression vector. Molecular and Cellular
Biology, 1983. 3(12): p. 2156-2165.
8. Fujita, R., et al., Expression of Autographa californica multiple nucleopolyhedrovirus
genes in mammalian cells and upregulation of the host beta-actin gene. J Virol, 2006.
80(5): p. 2390-5.
9. Kenoutis, C., et al., Baculovirus-mediated gene delivery into Mammalian cells does
not alter their transcriptional and differentiating potential but is accompanied by
early viral gene expression. J Virol, 2006. 80(8): p. 4135-46.
10. Laakkonen, J.P., et al., Baculovirus-mediated immediate-early gene expression and
nuclear reorganization in human cells. Cell Microbiol, 2008. 10(3): p. 667-81.
11. Atkinson, A.E., F.G.P. Earley, D.J. Beadle, and L.A.King,, Expression and
Characterization of the Chick Nicotinic Acetylcholine-Receptor Alpha-Subunit in Insect
Cells Using a Baculovirus Vector. European Journal of Biochemistry, 1990. 192(2): p.
451-458.
12. Jiang, S.S., et al., Temporal transcription program of recombinant Autographa
californica multiple nucleopolyhedrosis virus. J Virol, 2006. 80(18): p. 8989-99.
13. Friesen, P.D. and L.K. Miller, The regulation of baculovirus gene expression. Curr Top
Microbiol Immunol, 1986. 131: p. 31-49.
28
14. Huh, N.E. and R.F. Weaver, Identifying the RNA polymerases that synthesize specific
transcripts of the Autographa californica nuclear polyhedrosis virus. J Gen Virol, 1990.
71 ( Pt 1): p. 195-201.
15. Hoopes, R.R., Jr. and G.F. Rohrmann, In vitro transcription of baculovirus immediate
early genes: accurate mRNA initiation by nuclear extracts from both insect and
human cells. Proc Natl Acad Sci U S A, 1991. 88(10): p. 4513-7.
16. Olson, V.A., J.A. Wetter, and P.D. Friesen, The Highly Conserved Basic Domain I of
Baculovirus IE1 Is Required for hr Enhancer DNA Binding and hr-Dependent
Transactivation. J Virol, 2003. 77(10): p. 5668-77.
17. Olson, V.A., J.A. Wetter, and P.D. Friesen, Baculovirus transregulator IE1 requires a
dimeric nuclear localization element for nuclear import and promoter activation. J
Virol, 2002. 76(18): p. 9505-15.
18. Olson, V.A., J.A. Wetter, and P.D. Friesen, Oligomerization mediated by a helix-loophelix-like domain of baculovirus IE1 is required for early promoter transactivation. J
Virol, 2001. 75(13): p. 6042-51.
19. Chisholm, G.E. and D.J. Henner, Multiple early transcripts and splicing of the
Autographa californica nuclear polyhedrosis virus IE-1 gene. J Virol, 1988. 62(9): p.
3193-200.
20. !!! INVALID CITATION !!!
21. Guarino, L.A. and M.D. Summers, Interspersed Homologous DNA of Autographa
californica Nuclear Polyhedrosis Virus Enhances Delayed-Early Gene Expression. J
Virol, 1986. 60(1): p. 215-23.
22. Leisy, D.J., et al., A mechanism for negative gene regulation in Autographa californica
multinucleocapsid nuclear polyhedrosis virus. J Virol, 1997. 71(7): p. 5088-94.
23. Kool, M., et al., Identification of genes involved in DNA replication of the Autographa
californica baculovirus. Proc Natl Acad Sci U S A, 1994. 91(23): p. 11212-6.
24. Okano, K., V.S. Mikhailov, and S. Maeda, Colocalization of baculovirus IE-1 and two
DNA-binding proteins, DBP and LEF-3, to viral replication factories. J Virol, 1999.
73(1): p. 110-9.
25. Miele, S.A.B., et al., Baculovirus: Molecular Insights on Their Diversity and
Conservation. Int J Evol Biol, 2011. 2011.
26. Imai, N., S. Matsumoto, and W. Kang, Formation of Bombyx mori
nucleopolyhedrovirus IE2 nuclear foci is regulated by the functional domains for
oligomerization and ubiquitin ligase activity. J Gen Virol, 2005. 86(Pt 3): p. 637-44.
27. Imai, N., et al., Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING
finger proteins. J Virol, 2003. 77(2): p. 923-30.
28. Passarelli, A.L. and L.K. Miller, Three baculovirus genes involved in late and very late
gene expression: ie-1, ie-n, and lef-2. J Virol, 1993. 67(4): p. 2149-58.
29
29. Ono, C., et al., Tightly regulated expression of Autographa californica multicapsid
nucleopolyhedrovirus immediate early genes emerges from their interactions and
possible collective behaviors. PLoS One, 2015. 10(3): p. e0119580.
30. Mainz, D., I. Quadt, and D. Knebel-Morsdorf, Nuclear IE2 structures are related to viral
DNA replication sites during baculovirus infection. J Virol, 2002. 76(10): p. 5198-207.
31. Tung, H., et al., Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in
Insect and Mammalian Cells to Facilitate Its Proper Functioning. PLoS One, 2016.
11(2): p. e0148578.
32. Shippam-Brett, C.E., L.G. Willis, and D.A. Theilmann, Analysis of sequences involved in
IE2 transactivation of a baculovirus immediate-early gene promoter and identification
of a new regulatory motif. Virus Res, 2001. 75(1): p. 13-28.
33. Prikhod′ko, E.A., et al., In vivo and in vitro analysis of baculovirus ie-2 mutants. J Virol,
1999. 73(3): p. 2460-8.
34. Yoo, S. and L.A. Guarino, Functional dissection of the ie2 gene product of the
baculovirus Autographa californica nuclear polyhedrosis virus. Virology, 1994. 202(1):
p. 164-72.
35. Glickman, M.H. and A. Ciechanover, The ubiquitin-proteasome proteolytic pathway:
destruction for the sake of construction. Physiol Rev, 2002. 82(2): p. 373-428.
36. Mukhopadhyay, D. and H. Riezman, Proteasome-independent functions of ubiquitin in
endocytosis and signaling. Science, 2007. 315(5809): p. 201-5.
37. Schnell, J.D. and L. Hicke, Non-traditional functions of ubiquitin and ubiquitin-binding
proteins. J Biol Chem, 2003. 278(38): p. 35857-60.
38. Hay, R.T., SUMO: a history of modification. Mol Cell, 2005. 18(1): p. 1-12.
39. Sarge, K.D., Analysis of Protein Sumoylation. Curr Protoc Protein Sci, 2016. 83: p.
14.8.1-8.
40. Hoeller, D., et al., E3-independent monoubiquitination of ubiquitin-binding proteins.
Mol Cell, 2007. 26(6): p. 891-8.
41. Kerscher, O., R. Felberbaum, and M. Hochstrasser, Modification of proteins by
ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol, 2006. 22: p. 159-80.
42. Gareau, J.R. and C.D. Lima, The SUMO pathway: emerging mechanisms that shape
specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 2010. 11(12): p. 861-
71.
43. Uzunova, K., et al., Ubiquitin-dependent proteolytic control of SUMO conjugates. J
Biol Chem, 2007. 282(47): p. 34167-75.
44. Tatham, M.H., et al., RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for
arsenic-induced PML degradation. Nat Cell Biol, 2008. 10(5): p. 538-46.
45. Schimmel, J., et al., The ubiquitin-proteasome system is a key component of the
SUMO-2/3 cycle. Mol Cell Proteomics, 2008. 7(11): p. 2107-22.
30
46. Danielsen, J.M., et al., Mass spectrometric analysis of lysine ubiquitylation reveals
promiscuity at site level. Mol Cell Proteomics, 2011. 10(3): p. M110.003590.
47. Kim, Y.S., S.G.L. Keyser, and J.S. Schneekloth, Synthesis of 2’,3’,4’-trihydroxyflavone (2-
D08), an Inhibitor of Protein Sumoylation. Bioorg Med Chem Lett, 2014. 24(4): p.
1094-7.
48. Liu, C.Y., et al., RING and coiled-coil domains of baculovirus IE2 are critical in strong
activation of the cytomegalovirus major immediate-early promoter in mammalian
cells. J Virol, 2009. 83(8): p. 3604-16. |