博碩士論文 105827007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.138.138.144
姓名 林?君(Yu-Chun Lin)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究
(Fabrication and Characterization of EGFR-Targeted Indocyanine Green- Mitomycin C-Incorporated Perfluorocarbon Nano-Agents for Photochemotherapy of Bladder Cancer Cells)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell
★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 設計開發全氟碳複合奈米藥物載體對體表微生物多效抑菌功能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 膀胱癌是泌尿系統中最致命的疾病之一,根據世界衛生組織統計,膀胱癌好發於男性,其發生率在男性癌症中排名第九,死亡率排在全球第十三。目前絲裂黴素C(Mitomycin C;MMC)是最常用的抗膀胱癌藥物之一,然而,高劑量引起的嚴重副作用嚴重妨礙了其應用,為了解決上述問題達到其治療目的,本研究發展製備包覆靛氰綠(Indocyanine Green;ICG)與絲裂黴素C標靶表皮生長因子(Epidermal Growth Factor Receptor;EGFR)之全氟碳化物(Perfluorocarbon;PFC)雙層奈米乳劑(EGFR Target ICG–MMC- Encapsulated PFC Double Nanoemulsion;EIMPNEs),我們預期該試劑能發揮光與化學治療的功能以減緩傳統化學治療時伴隨的副作用與不適,同時又不犧牲治療效果。經過儀器分析EIMPNEs之平均粒徑與表面電位分別為分別為304.22 ± 18.65 nm和-12.67 ± 0.4 mV;ICG與MMC的包覆率分別為98.22 ± 0.86%與41.72 ± 6.86%。在體外模擬人體溫度 37°C下經過 48 小時之後,EIMPNEs所包覆ICG的降解率與游離的 ICG 水溶液相比減少了51%,顯示ICG在有了載體的包覆能夠獲得較佳之穩定度,並以此解決該物質易於水溶液中降解的問題。MMC在37oC避光環境下之藥物釋放率為11.61%,而在近紅外光照射(808 nm; 6 W/cm2)下之藥物釋放率為38.14%。此外,在近紅外光照射(808 nm; 6 W/cm2)下,EIMPNE含有? 40 μM ICG濃度的情況下其溫度在30秒內能夠達到> 40°C ,且5分鐘近紅外光照射後產生的單態氧量與相同濃度之游離ICG溶液相比增加11.2倍。此一結果證明了EIMPNEs對於光熱力和光動力療法的應用具有高度潛力。在細胞專一性試驗中,我們藉由比較EIMPNEs與接枝抗體前的載體─包覆靛氰綠與絲裂黴素C 之全氟碳化物奈米乳劑(ICG–MMC-Encapsulated PFC Double Nanoemulsion;IMPNEs)對EGFR表現型之膀胱癌細胞(T24)的結合效率,結果顯示EIMPNEs對T24的結合效率高出IMPNEs 1.6倍,證實EIMPNEs對EGFR表現型細胞具專一性。細胞體外試驗中(in vitro),EIMPNEs在與T24 細胞共同培養 4小時經近紅外光照射(808 nm ; 6W/cm 2)5 分鐘,再經過 24 小時培養後測量其細胞存活率,結果顯示EIMPNEs對膀胱癌細胞的毒殺效果顯著,僅需使用內含相當濃度18 μM MMC的EIMPNEs即可達到單獨使用90 μM MMC所造成的細胞死亡率。總結來說,本研究證明了EIMPNEs可同時提供EGFR+膀胱癌細胞標靶性以及綜合光及化學治療的效果,因此具有高度的潛力在未來發展成為一種高效能標靶治療膀胱癌的新興材料。
摘要(英) Bladder cancer is one of the most lethal urinary diseases. According to the statistics of World Health Organization, bladder cancer ranks as the ninth most frequently-diagnosed cancer with a higher incidence rate in men, and is the 13th leading death of cancer worldwide. Currently mitomycin C (MMC) is one of the most commonly used anti-bladder cancer drugs. However, serious side effects resulted from high dose severely hamper its application. To meet therapeutic purpose without aforementioned issues, we aim to manufacture anti-EGFR
indocyanine green (ICG) mitomycin C (MMC) encapsulated perfluorocarbon double nanoemulsions (EIMPNEs), and explore their photochemotherapeutic efficacy on EGFR-expressing bladder cancer cells in vitro. Based on the DLS analysis, the size and surface charge of the EIMPNEs are 304.22 ± 18.65 nm and -12.67 ± 0.4 mV, respectively. The encapsulation efficiencies of ICG and MMC are 98.22 ± 0.86% and 41.72 ± 6.86%, respectively. Under incubated at 37°C for 48 hours, The degradation of EIMPNEs almost prolong 51 % compared with Free ICG, and only 11.61 % drug release. In terms of the phototherapeutic efficacy of the agents, our data show that upon near infrared laser (NIR) exposure (808 nm; 6W/cm2), the temperature of the EIMPNEs with ? equivalent 40-μM ICG concentration was able to reach > 40oC within 30 sec and compare with the free ICG the amount of singlet oxygen generated significantly enhanced ? 10 folds after 5-min NIR laser treatment, demonstrating their potential availability for applications of photothermal and photodynamic therapy. Compare to the IMPNEs, EIMPNEs are more effective to combine the EGFR bladder cancer cell (T24) due to its target mechanism, indicated EIMPNEs has specification on EGFR-expressing bladder cancer cells. In cytotoxicity, EIMPNEs incubated with cell for 4 hr and upon NIR expose (808 nm; 6W/cm2) for 5 mins, our data showed that the EIMPNEs were effective in bladder cancer cells eradication ,and the resulting cell death rate was even higher than that caused by five-fold enhanced amount of encapsulated MMC alone. With the merits of improved ICG stability, EGFR binding specificity, and effective cancer cell eradication, the EIMPNEs exhibit potential for use in EGFR-expressing bladder cancer therapy with lower chemotoxicity.
關鍵字(中) ★ 膀胱癌
★ 光-化學治療
★ 靛氰綠
★ 絲裂黴素C
★ 全氟碳化合物
★ 雙層乳劑
關鍵字(英) ★ Bladder cancer
★ Photochemotherapy
★ Indocyanine green
★ Mitomycin C
★ Perfluorocarbon
★ Double emulsion
論文目次 摘 要.................................................I
Abstract...............................................III
誌謝.....................................................V
第一章 緒論.............................................1
1.1 研究背景..............................................1
1.2 研究動機與目的........................................2
第二章 文獻回顧..........................................4
2.1 膀胱癌概述............................................4
2.1.1 膀胱癌病理種類......................................4
2.1.2 膀胱癌致病因素......................................7
2.1.3膀胱癌治療方式及副作用................................8
2.2 光療.................................................9
2.2.1光熱力治療(Photothermal therapy;PTT).............10
2.2.2光動力治療 (Photodynamic therapy;PDT)..............11
2.3 靛氰綠(Indocyanine Green;ICG).....................13
2.4 絲裂黴素C(Mitomycin C;MMC)........................16
2.5 全氟碳化合物(Perfluorocarbon;PFC)..................18
2.6 聚乙二醇(PluronicsR)...............................20
第三章 實驗部分.........................................23
3.1 實驗藥品、儀器設備....................................23
3.1.1 藥品..............................................23
3.1.2 儀器..............................................24
3.1.3 藥物濃度檢量線.....................................26
3.2 實驗整體流程.........................................27
3.3 MMC-ICG全氟碳標靶奈米雙層乳劑之製備...................28
3.3.1製備包覆ICG與MMC之PFOB奈米雙層乳劑...................28
3.3.2表面修飾人表皮生長因子受體單株抗體(Anti–EGFR–mAb)...29
3.4 EIMPNEs物理特性分析.................................31
3.4.1粒徑分析............................................31
3.4.2表面電位分析........................................31
3.4.3 EIMPNEs表面接枝抗體之測定...........................31
3.4.4 掃描式電子顯微鏡(SEM)拍攝.........................32
3.4.5 包覆率分析.........................................32
3.4.6 包藥率分析.........................................32
3.4.7 熱穩定性分析.......................................32
3.5 測定EIMPNEs用於光治療功能之試驗.......................33
3.5.1產品照光後升溫之效能(Hyperthermia Effect)...........33
3.5.2產品生成單態氧之效能(Generation of Singlet Oxygen).34
3.6 細胞培養............................................34
3.7 EIMPNEs對EGFR表現型膀胱癌細胞的專一性試驗.............34
3.8 EIMPNEs體外細胞胞殺試驗..............................35
3.9 統計分析............................................36
第四章 結果與討論.......................................37
4.1 EIMPNEs的基本物性化性分析............................37
4.2 EIMPNEs產品表面型態分析..............................38
4.3 EIMPNEs產品表面型態分析..............................39
4.4 EIMPNEs內之MMC與ICG的包覆、包藥率分析................41
4.5 EIMPNEs之熱穩定性分析...............................41
4.6 EIMPNEs之照光升溫效能分析............................45
4.7 EIMPNEs之單態氧生成效能分析..........................47
4.8 於NIR照射下MMC釋放率分析.............................50
4.9 EIMPNEs對EGFR表現型之膀胱癌細胞的專一性分析...........52
4.10 EIMPNEs對膀胱癌細胞之胞殺效能分析....................54
第五章 結論.............................................58
第六章 未來展望.........................................59
參考文獻.................................................60
參考文獻 1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians, 2015; 65(2): 87-108.
2. Chiang, H. S., Guo, H. R., Hong, C. L., Lin, S. M., Lee, E. F. The incidence of bladder cancer in the black foot disease endemic area in Taiwan. British Journal of Urology, 1993; 71: 274-278.
3. Von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, Moore MJ, Zimmermann A, Arning M. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. Journal of Clinical Oncology, 2005; 23(21): 4602-4608.
4. 國泰醫院,癌症資訊網"膀胱癌簡介" https://www.cgh.org.tw/tw/content/depart/cancer/intropage12.html
5. 陳沛輝,亞東醫院,相關醫學資訊"膀胱癌預防" http://depart.femh.org.tw/indge/l2_9.aspx
6. 台灣泌尿腫瘤協會, "膀胱癌之診斷" , http://www.tuoa.tw/?p=19
7. 汪徽五, 周., 以奈米微胞做為傳輸化療藥物的設計考量及國際醫藥法規 管理新進展. RegMed, 2015; 53.
8. M. C. Metts, J. C. Metts, S. J. Milito, C. R. Thomas, Jr. Bladder cancer: a review of diagnosis and management. Journal of the National Medical Association, 2000; 92(6): 285-294.
9. Sumit Isharwal , Badrinath Konety. Non-muscle invasive bladder cancer risk stratification. Indian Journal of Urology, 2015; 31(4): 289–296.
10. National Cancer Institute (NCI), " Stages of Bladder Cancer" , https://www.cancer.gov/types/bladder/patient/bladder-treatment-pdq#section/_109
11. Uptodate資料庫, " WHAT IS INVASIVE BLADDER CANCER? "
,https://www.uptodate.com/contents/bladder-cancer-treatment-invasive-cancer-beyond-the-basics
12. Hooson J, Hicks RM, Grasso P, Chowaniec J. Ortho-toluene sulphonamide and saccharin in the promotion of bladder cancer in the rat. British Journal of Cancer, 1980; 42(1): 129-147.
13. Price JM, Biava CG, Oser BL, Vogin EE, Steinfeld J, Ley HL. Bladder tumors in rats fed cyclohexylamine or high doses of a mixture of cyclamate and saccharin. Science, 1970; 167(3921): 1131-1132.
14. KERR WK, BARKIN M, LEVERS PE, WOO SK, MENCZYK Z. The Effect of Cigarette Smoking on Bladder Carcinogens in Man. Canadian Medical Association Journal, 1965; 93: 1-7 .
15. Ahmedin Jemal, Rebecca Siegel, Jiaquan Xu, Elizabeth Ward. Cancer Statistics, 2010. CA: a cancer journal for clinicians, 2010; 60: 277-300.
16. American Cancer Society, " Intravesical Therapy for Bladder Cancer" ,https://www.cancer.org/cancer/bladder-cancer/treating/intravesical-therapy.html
17. Tan LB, Lin LM, Huang CH, Chiang CP, Chien CH, Pan CC. Antigenic detection and prognosis of patients with transitional cell carcinoma of the urinary bladder. Urologia Internationalis, 1989; 44: 264-271.
18. Henderson, T.A., Morries, L.D. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatric Disease and Treatment, 2015; 11: 2191-2208.
19. Cheng, L., Wang, C., Feng, L., Yang, K., Liu, Z. Functional nanomaterials for phototherapies of cancer. Chemical Reviews, 2014; 114: 10869-10939.
20. Rui, L.-L., H.-L. Cao, Y.-D. Xue, L.-C. Liu, L. Xu, Y. Gao, W.-A. Zhang. Functional organic nanoparticles for photodynamic therapy. Chinese Chemical Letters, 2016; 27(8): 1412-1420.
21. Tong, L., Y. Zhao, T.B. Huff, M.N. Hansen, A. Wei and J.-X. Cheng. Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Advanced materials (Deerfield Beach, Florida), 2007; 19: 3136-3141.
22. Hildebrandt, B., P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix and H. Riess. The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology / Hematology, 2002; 43(1): 33-56.
23. Jang, B., J.-Y. Park, C.-H. Tung, I.-H. Kim, Y. Choi. Gold Nanorod?Photosensitizer Complex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo. ACS Nano, 2011; 5(2): 1086-1094.
24. Matylevitch NP, Schuschereba ST, Mata JR, Gilligan GR, Lawlor DF, Goodwin CW, Bowman PD. Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury. The American journal of pathology, 1998; 153(2): 567-577.
25. Alla Bucharskaya, Galina Maslyakova, Georgy Terentyuk, Alexander Yakunin, Yuri Avetisyan, Olga Bibikova, Elena Tuchina, Boris Khlebtsov, Nikolai Khlebtsov, Valery Tuchin. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles. International Journal of Molecular Sciences , 2016; 17(8).
26. Henderson, B.W., T.J. Dougherty. HOW DOES PHOTODYNAMIC THERAPY WORK? Photochemistry and Photobiology, 1992; 55(1): 145-157.
27. Athar M, Elmets CA, Bickers DR, Mukhtar H. A novel mechanism for the generation of superoxide anions in hematoporphyrin derivative-mediated cutaneous photosensitization. Activation of the xanthine oxidase pathway. Journal of Clinical Investigation, 1989; 83(4): 1137-43.
28. Dolmans DE., Fukumura D., Jain RK. Photodynamic therapy for cancer. Nature Reviews Cancer, 2003; 3(5): 380-387.
29. Allison, R.R., K. Moghissi. Photodynamic Therapy (PDT): PDT Mechanisms. Clinical Endoscopy, 2013; 46(1): 24-29.
30. Cairnduff F, Stringer MR, Hudson EJ, Ash DV, Brown SB. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. British journal of cancer, 1994; 69(3): 605.
31. ?ivil? Luk?ien?. Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina, 2003; 39(12): 1137-1150.
32. Jie Yu, Mohammad A. Yaseen, Bahman Anvari, Michael S. Wong. Synthesis of near-infrared-absorbing nanoparticle-assembled capsules. Chemistry of materials, 2007; 19(6): 1277-1284.
33. Jean Marie Devoisselle, Sylvie Soulie Begu, Serge R. Mordon, Thomas Desmettre, H. Maillols. Fluorescence properties of indocyanin green-part 1: in-vitro study with micelles and liposomes. SPIE - the international society for optics and photonics, 1997; 2980: 453-460.
34. Philip, R., Penzkofer, Alfons, Baumler, W., Szeimies, R., Abels, C. Absorption and fluorescence spectroscopic investigation of indocyanine green. Journal of Photochemistry and Photobiology A: Chemistry, 1996; 96: 137–148.
35. Engel E, Schraml R, Maisch T, Kobuch K, Konig B, Szeimies RM, Hillenkamp J, Baumler W, Vasold R. Light-induced decomposition of indocyanine green. Investigative Ophthalmology & Visual Science, 2008; 49(5): 1777-1783.
36. Miwa, M. The principle of ICG fluorescence method. Open Surgical Oncology Journal, 2010; 2: 26-28.
37. Mustafa Kemal Ruhi, Ay?e Ak, Murat Gulsoy. Dose-dependent photochemical/photothermal toxicity of indocyanine green-based therapy on three different cancer cell lines. Photodiagnosis and Photodynamic Therapy, 2018; 21: 334-343
38. Nonami T, Nakao A, Kurokawa T, Inagaki H, Matsushita Y, Sakamoto J, Takagi H. Blood loss and ICG clearance as best prognostic markers of post-hepatectomy liver failure. Journal of Hepato-Gastroenterology, 1999; 46(27): 1669-1672.
39. Camille Giraudeau, Albert Moussaron, Aurelie Stallivieri, Serge Mordon, Celine Frochot. Indocyanine green: photosensitizer or chromophore? Still a debate. Current Medicinal Chemistry, 2014; 21(16): 1871–1897.
40. Saxena V, Sadoqi M, Shao J. Degradation kinetics of indocyanine green in aqueous solution. Journal of Pharmaceutical Sciences, 2003; 92(10): 2090–2097.
41. Shemesh CS, Moshkelani D, Zhang H. Thermosensitive liposome formulated indocyanine green for near-infrared triggered photodynamic therapy: in vivo evaluation for triple-negative breast cancer . Pharmaceutical Research, 2015; 32: 1604–1614.
42. Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL. Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. Journal of Neuro-Oncology, 2008; 86: 165–172.
43. Mundra V, Peng Y, Rana S, Natarajan A, Mahato RI. Micellar formulation of indocyanine green for phototherapy of melanoma. Journal of Controlled Release, 2015; 220: p.130–140.
44. Ishizawa T1, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, Hasegawa K, Beck Y, Fukayama M, Kokudo N. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer, 2009; 115(11): 2491-2504.
45. Kaibori M, Matsui K, Ishizaki M, Iida H, Sakaguchi T, Tsuda T, Okumura T, Inoue K, Shimada S, Ohtsubo S, Kusano M, Ikehara Y, Ozeki E, Kitawaki T, Kon M. Evaluation of fluorescence imaging with indocyanine green in hepatocellular carcinoma. Cancer Imaging, 2016; 6(16).
46. Zhou, J.F., M.P. Chin, S.A. Schafer. Aggregation and degradation of indocyanine green. International Society for Optics and Photonics, 1994; 2128: 495-505.
47. Landsman ML, Kwant G, Mook GA, Zijlstra WG. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. Journal of applied physiology, 1976; 40(4): 575-583.
48. Holzer W, Mauerer M, Penzkofer A, Szeimies RM, Abels C, Landthaler M, Baumler W. Photostability and thermal stability of indocyanine green. Journal of Photochemistry and Photobiology B: Biology, 1998; 47: 155–164.
49. Cherrick, G.R., S. W. Stein, C.M. Leevy, C.S. Davidson. INDOCYANINE GREEN: OBSERVATIONS ON ITS PHYSICAL PROPERTIES, PLASMA DECAY, AND HEPATIC EXTRACTION. Journal of Clinical Investigation, 1960; 39(4): 592-600.
50. Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T. Indocyanine green: physicochemical factors affecting its fluorescencein vivo. Microvascular research, 1998; 55(2): 146-152.
51. van den Biesen PR, Jongsma FH, Tangelder GJ, Slaaf DW. Yield of fluorescence from indocyanine green in plasma and flowing blood. Annals of biomedical engineering, 1995; 23(4): 475-481.
52. Desmettre, T., J. Devoisselle, S. Mordon. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Survey of ophthalmology, 2000; 45(1): 15-27.
53. Oradell, N. J. Physicians′ Desk Reference (Medical Economics Company), 1975: 642-643.
54. Jaap Verweij, Herbert M Pinedo. Mitomycin C: Mechanism of action,usefulness and limitations. Anti-Cancer Drugs, 1990; 1: 5–13
55. Palom, Y., Suresh Kumar, G., Tang, L.Q., Paz, M.M., Musser, S.M., Rockwell, S., Tomasz, M. Relative toxicities of DNA cross-links and monoadducts: new insights from studies of decarbamoyl mitomycin C and mitomycin C. Chemical Research in Toxicology, 2002, 15(11): 1398-1406.
56. Workman, P., Stratford, I. J. The experimental development of bioreductive drugs and their role in cancer therapy. Cancer and Metastasis Reviews, 1993, 12: 73-82.
57. Verwey, J., de Vries, J., Pinedo, H.M. Mitomycin C-induced renal toxicity, a dose-dependent side effect?. European Journal of Cancer and Clinical Oncology, 1987; 23: 195-199.
58. J.G. Riess. Oxygen carriers ("blood substitutes")--raison d′etre, chemistry, and some physiology. Chemical Reviews, 2001; 101(9): 2797–2920.
59. M.P. Krafft, J.G. Riess, J.G. Weers. in: S. Benita (Ed.). Submicron Emulsions in Drug Targeting and Delivery, Harwood. Amsterdam, 1998: 235–333.
60. Kenneth C. Lowe. Perfluorochemical respiratory gas carriers: benefits to cell culture systems. Journal of Fluorine Chemistry, 2002; 118: 19–26.
61. Kenneth C. Lowe. Engineering blood: synthetic substitutes from fluorinated compound. Journal of Tissue Engineering, 2003; 9(3): 389-399.
62. Cabrales, P., J.C. Briceno. Delaying blood transfusion in experimental acute anemia with a perfluorocarbon emulsion. The Journal of the American Society of Anesthesiologists, 2011; 114(4): 901-911.
63. Fraker CA1, Mendez AJ, Inverardi L, Ricordi C, Stabler CL. Optimization of perfluoro nano-scale emulsions: The importance of particle size for enhanced oxygen transfer in biomedical applications. Colloids and Surfaces B: Biointerfaces, 2012; 98: 26-35.
64. Spiess, B.D. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. Journal of Applied Physiology, 2009; 106(4): 1444-1452.
65. Diaz-Lopez, R., N. Tsapis, E. Fattal. Liquid perfluorocarbons as contrast agents for ultrasonography and 19F-MRI. Pharmaceutical research, 2010. 27(1): 1-16.
66. Kornmann LM, Reesink KD, Reneman RS, Hoeks AP. Critical appraisal of targeted ultrasound contrast agents for molecular imaging in large arteries. Ultrasound in medicine & biology, 2010. 36(2): 181-191.
67. Fabiilli ML, Lee JA, Kripfgans OD, Carson PL, Fowlkes JB. Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharmaceutical research, 2010; 27(12): 2753-2765.
68. Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Parker DL, Jeong EK, Kennedy AM. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. Journal of Controlled Release, 2011; 153(1): 4-15.
69. Shiraishi K, Endoh R, Furuhata H, Nishihara M, Suzuki R, Maruyama K, Oda Y, Jo J, Tabata Y, Yamamoto J, Yokoyama M. A facile preparation method of a PFC-containing nano-sized emulsion for theranostics of solid tumors. International journal of pharmaceutics, 2011; 421(2): 379-387.
70. F.S.Moolman, H.Rolfes, S.W.van derMerwe, W.W.Focke. Optimization of perfluorocarbon emulsion properties for enhancing oxygen mass transfer in a bio-artificial liver support system. Biochemical engineering journal, 2004; 19(3): 237-250.
71. Khattak SF, Chin KS, Bhatia SR, Roberts SC. Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnology and bioengineering, 2007; 96(1): 156-166.
72. Maillard E, Juszczak MT, Langlois A, Kleiss C, Sencier MC, Bietiger W, Sanchez-Dominguez M, Krafft MP, Johnson PR, Pinget M, Sigrist S. Perfluorocarbon emulsions prevent hypoxia of pancreatic β-cells. Cell transplantation, 2012; 21(4): 657-669.
73. McMILLAN, J.D., D.I. Wang, Enhanced Oxygen Transfer Using Oil?in?Water Dispersionsa. Annals of the New York Academy of Sciences, 1987; 506(1): 569-582.
74. Ju, L.K., J.F. Lee, W.B. Armiger. Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions. Biotechnology Progress, 1991; 7(4): 323-329.
75. K.C. Lowe, M.R. Davey, J.B. Power, Perfluorochemicals: their applications and benefits to cell culture. Trends in Biotechnology, 1998; 16(6): 272–277.
76. Ruchir Bhomia, Vivek Trivedi, John C. Mitchell, Nichola J. Coleman, Martin J. Snowden. Effect of Pressure on the Melting Point of Pluronics in Pressurized Carbon Dioxide. Industrial & Engineering Chemistry Research, 2014; 53: 10820-10825.
77. Yang M., Lai S. K., Wang Y., Zhong W., Happe C., Zhang M., Fu J., Hanes J. Biodegradable Nanoparticles Composed Entirely of Safe Materials That Rapidly Penetrate Human Mucus. Angewandte Chemie International Edition in English, 2011; 50(11): 2597.
78. Wei H., Zhuo R.-X., Zhang X.-Z. Design and Development of Polymeric Micelles with Cleavable Links for Intracellular Drug Delivery. Progress in Polymer Science, 2014; 38: 503.
79. Kumari A., Yadav S. K., Yadav S. C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids and Surfaces B: Biointerfaces, 2010; 75: 1.
80. Kabanov. A., Batrakova. E., Alakhov. V. Pluronic Block Copolymers as Novel Polymer Therapeutics for Drug and Gene Delivery. Journal of Controlled Release, 2002; 82: 189.
81. S. D. Carrigan, G. Scott, M. Tabrizian. Real-Time QCM-D Immunoassay through Oriented Antibody Immobilization Using Cross-Linked Hydrogel Biointerfaces. Langmuir, 2005; 21: 5966-5973
82. Chulhun Park , Chau Le-Ngoc Vo , Taehee Kang , Euichaul Oh , Beom-Jin Lee. New method and characterization of self-assembled gelatin–oleic nanoparticles using a desolvation method via carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction. European Journal of Pharmaceutics and Biopharmaceutics, 2015; 89: 365-373
83. Kolovskaya OS, Zamay TN, Belyanina IV, Karlova E, Garanzha I, Aleksandrovsky AS, Kirichenko A, Dubynina AV, Sokolov AE, Zamay GS, Glazyrin YE, Zamay S, Ivanchenko T, Chanchikova N, Tokarev N, Shepelevich N, Ozerskaya A, Badrin E, Belugin K, Belkin S, Zabluda V, Gargaun A, Berezovski MV, Kichkailo AS. Aptamer-Targeted Plasmonic Photothermal Therapy of Cancer. Molecular Therapy: Nucleic Acids, 2017; 9: 12-21
84. D. Jaque, L. Martinez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martin Rodrigueza, J. Garcia Sole. Nanoparticles for photothermal therapies. Nanoscale, 2014; 6(16) : 9494-9530.
85. Friedrich, M.G., Pichlmeier, U., Schwaibold, H., Conrad, S., Huland, H. Long-term intravesical adjuvant chemotherapy further reduces recurrence rate compared with short-term intravesical chemotherapy and short-term therapy with Bacillus Calmette-Guerin (BCG) in patients with non-muscle-invasive bladder carcinoma. European Urology, 2007; 52: 1123-1129.
86. Juan L. Vasquez , Julie Gehl , Gregers G. Hermann, Electroporation enhances mitomycin C cytotoxicity on T24 bladder cancer cell line:A potential improvement of intravesical chemotherapy in bladder cancer. Bioelectrochemistry, 2012; 88: 127-133
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明