博碩士論文 106226039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.217.246.148
姓名 黃柏齊(Bo-Chi Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 使用橫向剪切干涉術配合稀疏碼增加全像儲存系統的儲存容量
(Increase of Storage Capacity for Holographic Data Storage by Lateral Shearing Interferometry with use of Sparse Code)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用橫向剪切干涉術配合稀疏碼,建立考慮訊號密度的低通濾波光學模型。此模型應用於全像儲存系統之記錄端共軛點,以分析全像碟片之紀錄點。依照此模型,能夠模擬不同訊號密度、調製方式及低通寬度下的剪切干涉影像。透過模擬及實驗分析,全像儲存系統之儲存容量,在最高提升為2倍的限制下,至少可以提升為1.368倍。
摘要(英) In this thesis, an optical model considering the density of signal is proposed based on lateral shearing interferometry with use of sparse code through LPF. This model is applied to the conjugate of record side in holographic data storage system for analyzing the record point of the holographic disk. With this optical model, the shearing image in different signal density, modulation mode, filter size can be predicted. In simulation and experiment, the increase of storage capacity is at least 1.368 times by the limitation of twice.
關鍵字(中) ★ 橫向剪切干涉
★ 全像儲存
★ 低通濾波
關鍵字(英)
論文目次 目錄
摘要 V
Abstract VI
致謝 VII
目錄 VIII
圖目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 全像系統與儲存技術發展 2
1-3 Homodyne detection技術之發展 5
1-4 大綱 7
第二章 原理介紹 9
2-1 全像術理論 9
2-2 Homodyne detection原理與介紹 13
2-3 橫向剪切干涉術的架構種類 17
2-3-1環狀干涉儀之橫向剪切干涉術 17
2-3-2 Jamin interferometer之橫向剪切干涉術 18
2-3-3邁克森干涉儀之橫向剪切干涉術 19
2-3-4雷射光源之橫向剪切干涉術 20
2-3-5繞射原理之橫向剪切干涉術 21
2-4稀疏碼 23
2-5 Nyquist-Shannon sampling theorem 24
第三章 配合稀疏碼大小之雙頻光柵橫向剪切干涉儀 26
3-1 雙頻光柵橫向剪切干涉儀 26
3-2 以SLM調製光改良雙頻光柵之製作 27
3-2-1 雙頻光柵之剪切干涉原理 28
3-2-2 Blazed grating相位調製 31
3-2-3 改良雙頻光柵製作架構 34
3-2-4 沖洗全像片 39
3-3 符合稀疏碼大小的橫向剪切干涉結果 39
第四章 相位稀疏碼經低通濾波分析增加全像儲存系統之儲存容量 46
4-1 相位調製稀疏碼與振幅調製稀疏碼 47
4-2 配合稀疏碼的低通濾波系統 49
4-2-1 不同頻率編碼之低通濾波模擬 51
4-2-2不同頻率編碼之低通濾波實驗 61
4-3 全像儲存系統儲存容量增加比例分析 75
第五章 結論 79
參考文獻 81
中英文對照表 86
參考文獻 1. T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55, 09SA06 (2016).
2. L. Dhar, K. Curtis, and T. Fache, “Holographic data storage: Coming of age,” Nat. Photonics 2, 403–405 (2008).
3. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3, e177 (2014).
4. E. N. Leith, A. Kozma, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
5. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” in Proceedings of IEEE 92, 1231–1280 (2004).
6. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
7. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471 (1992).
8. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
9. Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Opt. Express 24, 10412-10423 (2016).
10. 楊繼賢,使用微透鏡陣列之同軸全像儲存系統與其考慮材料紀錄動態範圍之模型建立,國立中央大學光電科學研究所碩士論文,中華民國一百零六年。
11. D. Gabor, “A new Microscopic principle,” Nature 161,777(1948).
12. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
13. H. Coufal, D. Psaltis and G. T. Sincerbox, Eds., Holographic data storage, (Berlin, Germany: Springer-Verlag, 2000).
14. L. K. Anderson, “Holographic optical memory for bulk data storage,” Bell Lab. Record 45, 319-326 (1968).
15. W. C. Stewart, R. S. Mezrich, L. S. Cosentino, E. M. Nagle, F. S. Wendt and R. D. Lohnman., “An experimental read-write holographic memory,” RCA Rev. 34, 3-44 (1973).
16. N. Nishida, M. Sakaguchi and F. Saito, “Holographic coding plate: a new application of holographic memory,” Appl. Opt. 12,1663-1674 (1973).
17. W. H. Strehlow, R. L. Dennison and J. R. Packard, “Holographic data store,” J. Opt. Soc. Am. 64, 543-544 (1974).
18. L. d’Auria, J. P. Huignard, C. Slezak, and E. Spitz, “Experimental holographic read-write memory using 3-D storage,” Appl. Opt. 13, 808-818 (1974).
19. A. Bardos, “Wideband holographic recoder,” Appl. Opt. 13, 832-840 (1974).
20. K. K. Sutherlin, J. P. Lauer and R. W. Olenick, “Holoscan: a commercial holographic ROM,” Appl. Opt. 13, 1345-1354 (1974).
21. Y. Tsunoda, K. Tatsuno, K. Kataoka, and Y. Takeda, “Holographic video disk: an alternative approach to optical videodisks,” Appl. Opt. 15, 1398-1403 (1976).
22. K. Kubota, Y. Ono, M. Kondo, S. Sugama, N. Nishida, and M. Sakaguchi, “Holographic disk with high data transfer rate: its application to an audio response memory,” Appl. Opt. 19, 944-951(1980).
23. Isao Satoh, Makoto Kato, Katsuyuki Fujito, and Fumikazu Tateishi, “Holographic memory system for Kanji character generation,” Appl. Opt. 28, 2634-2640 (1989).
24. J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
25. G Zhou, Y Qiao, F Mok and D Psaltis, “A holographic memory product for fingerprint identification,” Opt. Photonics News 43 (1996).
26. Ian McMichael, William Christian, David Pletcher, Tallis Y. Chang, and John H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375-2379 (1996).
27. M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, and G. Wittmann, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360-2374 (1996).
28. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639-641 (1997).
29. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Gunther, R. M. Macfarlane, and G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509-1513 (1997).
30. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
31. A. Pu ; Robert Denkewalter ; Demetri Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737 (1997).
32. A. Pu and D. Psaltis, in 1997 Optical Data Storage Topical Meeting (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 48–49.
33. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A.Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 250 Gigapixels/in2,” Opt. Lett. 26, 444–446 (2001).
34. K. Curtis, “Holographic Data Storage,” presented at 2005 Fall Research Review, Center for Magnetic Recording Research, University of California, San Diego, October 26, 2005.
35. Militaryaerospace, Hard drives rule for military storage,
https://www.militaryaerospace.com/articles/print/volume-15/issue-12/features/technology-focus/hard-drives-rule-for-military-storage.html
36. K. Tanaka, H. Mori, M. Hara, K. Hirooka, A. Fukumoto, and K. Watanabe, “High density recording of 270 Gbits/inch2 in a coaxial holographic storage system,” Tech. Digest of ISOM 2007, MO–D–03.
37. R. M. Gagliardi, S. Karp, Optical Communications, (Wiley-Interscience, 2nd ed. 1995).
38. T. C. Lee, “Heterodyne Readout Holographic Memory,” Reissued U.S. Patent Re. 30,166, December 11, 1979.
39. T. C. Lee, “Differential Readout Holographic Memory,” U. S. Patent 3,720,453, March 13,1973.
40. H. Horimai, “Apparatus and Method Recording/Reproducing Optical Information,” U. S. Patent 7,065,032 B2, June 20, 2006.
41. W. R. Klein, “Theoretical Efficiency of Bragg Devices,” Proc. IEEE 54, 803 (1966).
42. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
43. H. R. Carleton and W. T. Maloney, “A balanced optical heterodyne detector,” Appl. Opt. 7 (6), 1241 (1968).
44. J. H. McElroy, “Infrared heterodyne solar radiometry,” Appl. Opt. 11 (7), 1619 (1972).
45. Y. Fujii, J. Yamashita, S. Shikata, and S. Saito, “Incoherent optical heterodyne detection and its application to air pollution detection,” Appl. Opt. 17 (21), 3444 (1978).
46. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8 (3), 177 (1983).
47. R. Stierlin, R. Battig, P. D. Henchoz, HP Weber, “Excess-noise suppression in a fibre-optic balanced heterodyne detection system,” Opt. Quantum Electron. 18 (6), 445 (1986).
48. T. Okoshi, “Recent advances in coherent optical fiber communications systems,” J. Lightwave Commun. 5 (1), 44 (1987).
49. M. J. Collett, R. Loudon and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt. 34 (6-7), 881 (1987).
50. H. Mikami, T. Shimano, H. Kudo, J. Hashizume and H. Miyamoto, “Read-out signal amplification by homodyne detection scheme,” Joint International Symposium on Optical Memories and Optical Data Storage, Waikoloa Hawaii, July (2008), paper TuA01.
51. S. Aoki, M. Yamada and T. Yamagami, “A novel deformable mirror for spherical aberration compensation,” Joint International Symposium on Optical Memories and Optical Data Storage, Waikoloa Hawaii, July (2008), paper TuB02.
52. A.M. van der Lee and E. Altewischer, “Drive considerations for multi-layer discs,” International Symposium on Optical Memories Takamatsu, Japan, October (2006), paper Mo-C-05.
53. K. Tanaka, M. Hara, K. Tokuyama, K. Takasaki, H. Okada, Y. Okamoto, H. Mori, A. Fukumoto and K. Okada, “Experimental verification of coherent addition technique for coaxial holographic data storage,” Optical Data Storage Conference, Florida (2009).
54. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
55. M. V. R. K. Murty and D. Malacara, “Some Applications of the Gas Laser as a Source of Light for the Testing of Optical Sytems, ” Proceedings of the Conference on Photographic and Spectroscopic Optics, Tokyo and Kyoto, 1964, Japan. J. Appl. Phys., 4, Suppl. 1, 106–111 (1965).
56. D. Nyssonen and J. M. Jerke, “Lens Testing with a Simple Wavefront Shearing Interferometer, ” Appl. Opt., 12, 2061–2082 (1973).
57. P. Hariharan and D. Sen, “Cylic Shearing Interferometer,” J. Sci. Instrum., 37, 374 (1960).
58. M. V. R. K. Murty, “The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source, ” Appl. Opt., 3, 531 (1964b).
59. D. Kelsall, “Optical frequency response characteristics in the presence of spherical aberration measured by an automatically recording interferometric instrument,” Proc. Phys. Soc., 73, 465 (1959).
60. M. V. R. K. Murty, “The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source, ” Appl. Opt., 3, 531–534 (1964a).
61. J. C. Wyant, “Double Frequency Grating Lateral Shear Interferometer, ” Appl. Opt., 12, 2057 (1973).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2018-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明