參考文獻 |
[1] W. Barthlott, and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, vol. 202, no. 1, pp. 1-8, 1997.
[2] M. Trost, S. Schroder, T. Feigl et al., “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Applied Optics, vol. 50, no. 9, pp. C148-C153, 2011.
[3] P. Carcia, R. McLean, M. Reilly et al., “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters, vol. 82, no. 7, pp. 1117-1119, 2003.
[4] S. K. Sethi, and G. Manik, “Recent Progress in Super Hydrophobic/Hydrophilic Self-Cleaning Surfaces for Various Industrial Applications: A Review,” Polymer-Plastics Technology and Engineering, pp. 1-21, 2018.
[5] H. Zhou, H. Wang, H. Niu et al., “Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating,” Advanced M1aterials, vol. 24, no. 18, pp. 2409-2412, 2012.
[6] H. Wang, Y. Xue, J. Ding et al., “Durable, self?healing superhydrophobic and superoleophobic surfaces from fluorinated?decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane,” Angewandte Chemie International Edition, vol. 50, no. 48, pp. 11433-11436, 2011.
[7] H. H. Ipekci, H. H. Arkaz, M. S. Onses et al., “Superhydrophobic coatings with improved mechanical robustness based on polymer brushes,” Surface and Coatings Technology, vol. 299, pp. 162-168, 2016.
[8] K. Guan, “Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films,” Surface and Coatings Technology, vol. 191, no. 2-3, pp. 155-160, 2005.
[9] T. Otitoju, A. Ahmad, and B. Ooi, “Superhydrophilic (superwetting) surfaces: a review on fabrication and application,” Journal of Industrial and Engineering Chemistry, vol. 47, pp. 19-40, 2017.
[10] Terpilowski, K., et al. Changes in wettability of polycarbonate and polypropylene pretreated with oxygen and argon plasma. in Proceedings of the 8th International Conference MMT-20142. ed. by Rector, Head of the Materials Research Center, Ariel University, 2014.
[11] I. Langmuir, “Oscillations in ionized gases,” Proceedings of the National Academy of Sciences, vol. 14, no. 8, pp. 627-637, 1928.
[12] 國科會精密儀器發展中心, 真空技術與應用, 台灣: 全華圖書, 2004.03.24.
[13] e. B.Chapman, Glow Discharge Process, New York: John Wiley & Sons, 1980.
[14] 李洋汎, “冷電漿沉積及接枝聚合固定軟骨素改善鈦金屬表面的抗蝕性與細胞親和性,” 2013.
[15] 魏敬倫, “以反應性射頻磁控濺鍍搭配 HMDSO 電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究,” 國立中央大學, 2012.
[16] 楊順文, “電漿聚合碳氮層-TPX 複合膜應用於氧氮分離之研究,” 中原大學, 2002.
[17] 劉志宏, 陳志瑋, 張加強 et al., “簡介大氣電漿技術及產業應用,” 機械工業 September, no. 282, pp. p87-98, 2006.
[18] 堤井信力, “電漿應用技術的新發展,” 光連雙月刊, NO.102, 2012.11月.
[19] E. Adem, M. Avalos-Borja, E. Bucio et al., “Surface characterization of binary grafting of AAc/NIPAAm onto poly (tetrafluoroethylene)(PTFE),” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 234, no. 4, pp. 471-476, 2005.
[20] J. Li, M. Zhai, M. Yi et al., “Radiation grafting of thermo-sensitive poly (NIPAAm) onto silicone rubber1,” Radiation Physics and Chemistry, vol. 55, no. 2, pp. 173-178, 1999.
[21] J. Thiebaut, T. Belmonte, D. Chaleix et al., “Comparison of surface cleaning by two atmospheric pressure discharges,” Surface and Coatings Technology, vol. 169, pp. 186-189, 2003.
[22] F. Ohuchi, T. Lin, J. Antonelli et al., “Preparation and in-situ characterization of polycarbosilane thin films by dc plasma-enhanced deposition,” Thin solid films, vol. 245, no. 1-2, pp. 10-16, 1994.
[23] J.-S. Chang, P. A. Lawless, and T. Yamamoto, “Corona discharge processes,” IEEE Transactions on plasma science, vol. 19, no. 6, pp. 1152-1166, 1991.
[24] Y. Fukushima, C. Berge-Thierry, P. Volant et al., “Attenuation relation for West Eurasia determined with recent near-fault records from California, Japan and Turkey,” Journal of Earthquake Engineering, vol. 7, no. 04, pp. 573-598, 2003.
[25] G. Selwyn, H. Herrmann, J. Park et al., “Materials Processing Using an Atmospheric Pressure, RF?Generated Plasma Source,” Contributions to Plasma Physics, vol. 41, no. 6, pp. 610-619, 2001.
[26] A. Michelmore, P. Martinek, V. Sah et al., “Surface Morphology in the Early Stages of Plasma Polymer Film Growth from Amine?Containing Monomers,” Plasma Processes and Polymers, vol. 8, no. 5, pp. 367-372, 2011.
[27] R. T. Chen, B. W. Muir, L. Thomsen et al., “New insights into the substrate–plasma polymer interface,” The Journal of Physical Chemistry B, vol. 115, no. 20, pp. 6495-6502, 2011.
[28] H. Yasuda, Plasma Polymerization., Orlando: Academic Press, 1985.
[29] 楊士賢, “以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究,” 中原大學, 2005.
[30] H. Yasuda, “New insights into aging phenomena from plasma chemistry,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 515, no. 1-2, pp. 15-30, 2003.
[31] H. Yasuda, Luminous chemical vapor deposition and interface engineering, New York: Marcel Dekker, 2005.
[32] H. Yasuda, and T. Yasuda, “The competitive ablation and polymerization (CAP) principle and the plasma sensitivity of elements in plasma polymerization and treatment,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 38, no. 6, pp. 943-953, 2000.
[33] E. Lecoq, D. Duday, S. Bulou et al., “Plasma polymerization of APTES to elaborate nitrogen containing organosilicon thin films: influence of process parameters and discussion about the growing mechanisms,” Plasma Processes and Polymers, vol. 10, no. 3, pp. 250-261, 2013.
[34] H. Gau, S. Herminghaus, P. Lenz et al., “Liquid morphologies on structured surfaces: from microchannels to microchips,” Science, vol. 283, no. 5398, pp. 46-49, 1999.
[35] N. L. Abbott, J. P. Folkers, and G. M. Whitesides, “Manipulation of the wettability of surfaces on the 0.1-to 1-micrometer scale through micromachining and molecular self-assembly,” Science, vol. 257, no. 5075, pp. 1380-1382, 1992.
[36] S. Sorcar, A. Razzaq, H. Tian et al., “Facile electrochemical synthesis of anatase nano-architectured titanium dioxide films with reversible superhydrophilic behavior,” Journal of Industrial and Engineering Chemistry, vol. 46, pp. 203-211, 2017.
[37] B. Capillarity and Wetting Phenomena: Drops, Pearls, Waves, Pierre-Gilles de Gennes, Francoise Brochard-Wyart, David Quere (auth.), New York: Springer-Verlag, 2004.
[38] X. Feng, and L. Jiang, “Design and creation of superwetting/antiwetting surfaces,” Advanced Materials, vol. 18, no. 23, pp. 3063-3078, 2006.
[39] R. J. Lipshutz, S. P. Fodor, T. R. Gingeras et al., “High density synthetic oligonucleotide arrays,” Nature genetics, vol. 21, no. 1s, pp. 20, 1999.
[40] J. Yuan, X. Liu, O. Akbulut et al., “Superwetting nanowire membranes for selective absorption,” Nature Nanotechnology, vol. 3, no. 6, pp. 332, 2008.
[41] T. Aytug, J. T. Simpson, A. R. Lupini et al., “Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films,” Nanotechnology, vol. 24, no. 31, pp. 315602, 2013.
[42] J. T. Park, J. H. Kim, and D. Lee, “Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings,” Nanoscale, vol. 6, no. 13, pp. 7362-7368, 2014.
[43] D. S. Kommireddy, A. A. Patel, T. G. Shutava et al., “Layer-by-layer assembly of TiO2 nanoparticles for stable hydrophilic biocompatible coatings,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 7, pp. 1081-1087, 2005.
[44] T. Shimizu, T. Goda, N. Minoura et al., “Super-hydrophilic silicone hydrogels with interpenetrating poly (2-methacryloyloxyethyl phosphorylcholine) networks,” Biomaterials, vol. 31, no. 12, pp. 3274-3280, 2010.
[45] N. Adam, “Use of the term ‘Young′s Equation’for contact angles,” Nature, vol. 180, no. 4590, pp. 809, 1957.
[46] E. Celia, T. Darmanin, E. T. de Givenchy et al., “Recent advances in designing superhydrophobic surfaces,” Journal of Colloid and Interface Science, vol. 402, pp. 1-18, 2013.
[47] 王姿妤, “含界面活性劑液滴在 SBSi 表面上的特殊行為,” 國立中央大學, 2017.
[48] R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Industrial & Engineering Chemistry, vol. 28, no. 8, pp. 988-994, 1936.
[49] 蘇智偉, “光誘導氧化鋅薄膜之表面潤濕最佳化研究,” 臺北科技大學, 2014.
[50] A. Nakajima, K. Hashimoto, and T. Watanabe, "Recent studies on super-hydrophobic films," Molecular Materials and Functional Polymers, pp. 31-41: Springer, 2001.
[51] T. R. Gengenbach, and H. J. Griesser, “Compositional changes in plasma?deposited fluorocarbon films during ageing,” Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 26, no. 7, pp. 498-511, 1998.
[52] R. C. Chatelier, X. Xie, T. R. Gengenbach et al., “Quantitative analysis of polymer surface restructuring,” Langmuir, vol. 11, no. 7, pp. 2576-2584, 1995.
[53] 謝志尚, “六氟化硫電漿對軟性基材表面特性的影響,” 國立中山大學, 2008.
[54] 呂昭熠, “電漿化學氣相沉積poly-l-lysine薄膜之研究,” 中華大學, 2003.
[55] M. Vandenbossche, and D. Hegemann, “Recent approaches to reduce aging phenomena in oxygen-and nitrogen-containing plasma polymer films: An overview,” Current Opinion in Solid State and Materials Science, 2018.
[56] H. Biederman (Ed.), Plasma Polymer Films,, p.^pp. pp.13-24, London UK: Imperial College Press, 2004.
[57] S. Ligot, E. Bousser, D. Cossement et al., “Correlation Between Mechanical Properties and Cross?Linking Degree of Ethyl Lactate Plasma Polymer Films,” Plasma Processes and Polymers, vol. 12, no. 6, pp. 508-518, 2015.
[58] G. Reiter, M. Hamieh, P. Damman et al., “Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting,” Nature materials, vol. 4, no. 10, pp. 754, 2005.
[59] A. Ulman, Ultrathin Organic Films, California Academic Press San Diego, 1991.
[60] K. S. Siow, L. Britcher, S. Kumar et al., “Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization?a review,” Plasma processes and polymers, vol. 3, no. 6?7, pp. 392-418, 2006.
[61] M. Gueye, T. Gries, C. Noel et al., “Interaction of (3?Aminopropyl) triethoxysilane With Late Ar? N2 Afterglow: Application to Nanoparticles Synthesis,” Plasma Processes and Polymers, vol. 13, no. 7, pp. 698-710, 2016.
[62] B. W. Muir, S. L. Mc Arthur, H. Thissen et al., “Effects of oxygen plasma treatment on the surface of bisphenol A polycarbonate: a study using SIMS, principal component analysis, ellipsometry, XPS and AFM nanoindentation,” Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 38, no. 8, pp. 1186-1197, 2006.
[63] 黃俊欽教授. "高分子功能性薄膜 -技術資料(塑膠的加工性)."
[64] 黃俊欽教授, "高分子功能性薄膜 -技術資料(塑料物性介紹)," 國立高雄應用科技大學模具工程系
[65] "https://www.alfa.com/zh-cn/prodspec/A10668."
[66] “OECD SIDS CAS,” 經濟合作暨發展組織, vol. No. 919-30-2.
[67] "https://pubchem.ncbi.nlm.nih.gov/compound/13521 ".
[68] Y.-R. Luo, Comprehensive handbook of chemical bond energies: CRC press, 2007.
[69] Vecco Mark II? Fluid Cooled Ion SourceTechnical Manual.
[70] 李其紘, “原子力顯微鏡的基本介紹,” 國立臺灣科學教育館-科學研習月刊, No. 52, 2013.05
[71] 黃英碩, “掃描探針顯微術的原理及應用,” 科儀新知, no. 144, pp. 7-17, 2005.
[72] “Bruker AFM 使用說明書.”
[73] "http://dragon.ccut.edu.tw/~mejwc1/p-mea/content/ch_18.pdf."
[74] H. Hertz, “Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung,” Annalen der Physik, vol. 267, no. 8, pp. 983-1000, 1887.
[75] 林柏毅, “超親水電漿聚合薄膜之研究” 國立中央大學, 2017.
[76] A. Qureshi, S. Shah, S. Pelagade et al., "Surface modification of polycarbonate by plasma treatment." p. 012108.
[77] F. Palumbo, R. Di Mundo, D. Cappelluti et al., “Superhydrophobic and superhydrophilic polycarbonate by tailoring chemistry and nano?texture with plasma processing,” Plasma Processes and Polymers, vol. 8, no. 2, pp. 118-126, 2011.
[78] Y.-H. Ting, C.-C. Liu, S.-M. Park et al., “Surface roughening of polystyrene and poly (methyl methacrylate) in Ar/O2 plasma etching,” Polymers, vol. 2, no. 4, pp. 649-663, 2010.
[79] T. Chung, D. Nest, D. Graves et al., “Electron, ion and vacuum ultraviolet photon effects in 193 nm photoresist surface roughening,” Journal of Physics D: Applied physics, vol. 43, no. 27, pp. 272001, 2010.
[80] D. Nest, T. Chung, J. Vegh et al., “Role of polymer structure and ceiling temperature in polymer roughening and degradation during plasma processing: a beam system study of P4MS and PαMS,” Journal of Physics D: Applied Physics, vol. 43, no. 8, pp. 085204, 2010.
[81] C. M. Chan, Polymer surface modification and characterization, 1993.
[82] K. L. Mittal, and A. Pizzi, Adhesion promotion techniques: technological applications: CRC Press, 1999.
[83] J. Klemberg-Sapieha, L. Martinu, N. Yamasaki et al., “Tailoring the adhesion of optical films on polymethyl-methacrylate by plasma-induced surface stabilization,” Thin Solid Films, vol. 476, no. 1, pp. 101-107, 2005.
[84] S. Kitova, M. Minchev, and G. Danev, “RF plasma treatment of polycarbonate substrates,” Journal of Optoelectronics and Advanced Materials, vol. 7, no. 5, pp. 2607-2612, 2005.
[85] F. Sterpone, G. Stirnemann, J. T. Hynes et al., “Water hydrogen-bond dynamics around amino acids: the key role of hydrophilic hydrogen-bond acceptor groups,” The Journal of Physical Chemistry B, vol. 114, no. 5, pp. 2083-2089, 2010.
[86] 梁文傑, “眾志成城的氫鍵化學鍵中的小矮人,” 化學, vol. 62, no. 1, pp. 43-58, 2004. |