博碩士論文 105324021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.144.96.159
姓名 古??如(Nien-Ju Ku)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
(Isolation and differentiation of human adipose-derived stem cells cultured on biomaterials Immobilized with ECM)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類脂肪幹細胞(hADSCs)具有不均一的特性,此特性可從其多樣的基因型及分化能力中表現。依不同純化方式所分離出的人類脂肪幹細胞會具有不同的純度及多樣性。細胞其生長的微環境於人類脂肪幹細胞之基因表現及分化能力中,扮演著重要的角色。於先前的研究,我們發展了(一)培養於特定材料,例如聚苯乙烯細胞培養盤(簡稱培養盤、TCPS)之培養法,以及(二)利用通過網狀尼龍膜過濾器之膜遷移法。1在此研究中,我們正在發展新的人類脂肪幹細胞純化方式,期望利用優化後的純化方法所獲得之脂肪幹細胞能具有較高多能性,以及細胞分化能力,如:軟骨細胞、成骨細胞及脂肪細胞之分化。我們將從脂肪組織中萃取出的人類脂肪幹細胞藉由培養方法培養在不同的基材上,如:(一)聚苯乙烯細胞培養盤、(二)培養盤塗佈基質膠(Matrigel)、(三)培養盤塗佈第一型膠原蛋白(Collagen type I)、(四)培養盤塗佈Synthemax? II (市售合成生醫材料,以寡玻璃粘連蛋白為主)、(五)培養盤塗佈人類重組玻璃粘連蛋白(human recombinant Vitronectin),以及(六) 培養盤塗佈人類纖維連接蛋白(Fibronectin)。基質膠及第一型膠原蛋白為異種來源的材料,其餘細胞外間質之來源則為人類(無異種材料)。在上述的材料中,培養在基質膠塗佈之培養盤上的人類脂肪幹細胞具有最高純度,最高之基因表現,以及最高的分化能力。儘管培養在塗佈無異種細胞外間質之培養盤的人類脂肪幹細胞,其多能性及分化能力相對低。然而,在無異種材料中,我們發現脂肪幹細胞培養在塗佈人類重組玻璃粘連細胞及Synthemax? II的培養盤上,其結果表現最佳。未來若希望將人類脂肪幹細胞使用在臨床應用上,發展出恰當的無異種培養環境是必須的。
此外,目前我們正在發展一新的培養液,利用人類血小板裂解液取代小牛血清作為養分添加劑以優化人類脂肪幹細胞之純度,並建立一更完全的無異種培養環境。
摘要(英) Human adipose-derived stem cells (hADSCs) exhibit heterogeneous characteristics, indicating various genotypes and differentiation abilities. The isolated hADSCs can possess different purity levels and divergent properties depending on the purification methods used. Microenvironment plays an important role on gene expression and differentiation of hADSCs.
Previously, we developed purification of hADSCs from adipose (fat) tissue by (a) the culture method on specific culture materials and (b) the membrane migration method through Nylon mesh filter.1 In this study, we developed a new hADSC line from adipose tissue by culturing on the optimal cell culture condition, which can purify hADSCs having high pluripotency and high differentiation ability into chondrocytes, osteoblasts and adipocytes. We isolated hADSCs from adipose tissue by the culture method where different substrates were used; (a) tissue culture polystyrene (TCPS) dishes and TCPS dishes coated with Matrigel (b), collagen type I (c), Synthemax II (oligo-vitronectin based substrate) (d), human recombinant-vitronectin (e), or human fibronectin (f) where Matrigel and collagen type I are xeno-contained materials and another extracellular matrices (ECMs) are xeno-free materials.
Among these substrates, hADSCs cultured on Matrigel-coated dishes presented the highest purity of hADSCs, the highest pluripotent gene expression, and the highest differentiation abilities. Despite hADSCs cultured on TCPS dishes coated with xeno-free ECMs showed lower pluripotency and differentiation ability compared to those on Matrigel-coated TCPS dishes. However, TCPS dishes coated with human recombinant-vitronectin and Synthemax II were found to be the best dishes for hADSCs isolation and culture among the TCPS dishes coated with xeno-free ECMs. It should be necessary to develop optimal xeno-free culture dishes and conditions of hADSCs for clinical application of hADSCs in future.
Furthermore, we are now developing a new culture medium by replacing the fetal bovine serum (FBS) with human platelet lysate (hPL) as the supplement to improve the purity of hADSCs and build up more complete xeno-free culture conditions of hADSCs for clinical applications.
關鍵字(中) ★ 幹細胞
★ 人類脂肪幹細胞
★ 細胞外間質
★ 幹細胞培養
★ 人類血小板裂解液體
★ 細胞分化能力
關鍵字(英) ★ mesenchymal stem cells
★ human adipose-derived stem cells
★ extracellular matrix
★ human platelet lysate
★ differentiation
論文目次 Chapter 1. Introduction.....1
1-1 Cellular therapy in regenerative medicine.....1
1-1.1 Stem cells.....2
1-2 Adipose derived-stem cells (ADSCs).....6
1-2.1 Isolation of adipose derived-stem cells.....7
1-2.2 Surface immuophenotype of ADSCs......9
1-2.3 Differentiation abilities of adipose derived-stem cells......12
1-3 Extracellular marix (ECM)......15
1-3.1 Matrigel (M)......17
1-3.2 Collagen (Col).....17
1-3.3 Fibronectin (FN)......19
1-3.4 Vitronectin (VN).....21
1-4 Human platelet lysate (hPL)......22
1-3.5 Preparation of human platelet lysate......23
1-4.2 Components within human platelet lysate......27
1-4 Goal of this study......29
Chapter 2 Materials and Methods......31
2-1 Experimental materials.....31
2-1.1 Cell cultivation.....31
2-1.2 ECM-coated dish for cell culture.....33
2-1.3 Differentiation of hADSCs.....34
2-1.4 Characteristic evaluation of hADSCs.....35
2-2 Experimental instruments.....36
2-3 Experimental methods.....37
2-3.1 Preparation of phosphate buffer solution (PBS).....37
2-3.2 Culture medium preparation.....37
2-3.3 Isolation of adipose-derived stem cells (hADSCs).....38
2-3.4 Cultivation and passage of hADSCs.....39
2-3.5 Preparation of extracellular matrix (ECM)-coated dish.....42
2-3.6 Pluripotent gene expression analysis.....43
2-3.7. Immunofluorescence staining.....45
2-3.8 Flow-cytometry measurements.....46
2-3.9 Osteogenic differentiation.....47
2-3.10 Alkaline phosphate activity (ALP activity).....47
2-3.11 Alizarin red S staining.....48
2-3.12 von Kossa staining.....48
2-3.13 Adipogenic differentiation of hADSCs.....48
2-3.14 Oil Red O staining.....49
2-3.15 Chondrogenic differentiation of hADSCs.....49
2-3.16 Alcian blue staining.....49
2-3.17 Quantitative analysis of differentiation.....50
Chapter 3 Results and Discussion.....51
3-1 Cultivation of hADSCs.....51
3-1.1 The morphology of hADSC on ECMs-coating dishes.....52
3-1.2 The effect of human platelet lysate on hADSC culture.....57
3-2 Pluripotency analysis of hADSCs.....65
3-2.1 The impact of ECMs as coating materials to keep pluripotency of hADSCs.....65
3-2.2 The enhancement of pluripotency of hADSCs cultured with hPL.....70
3-3 Differentiation abilities of hADSCs.....74
3-3.1 Adipogenic differentiation of hADSCs cultured on ECM-coating dishes.....75
3-3.2 Osteogenic differentiation ability of hADSCs.....77
3-4 Development of differentiation medium.....85
3-4.1 Development of osteogenic induction medium.....85
Chapter 4 Conclusion.....90
參考文獻 1. Mason., C. and P. Dunnill., A brief definition of regenerative. Regenerative Medicine, 2007. 3(1): p. 1-5.
2. Mahla, R.S., Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol, 2016. 2016: p. 6940283.
3. Mao, A.S. and D.J. Mooney, Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci U S A, 2015. 112(47): p. 14452-9.
4. Jaklenec., A., et al., Progress in the Tissue Engineering and Stem Cell Industry ‘‘Are we there yet?’’. Tissue Engineering Part B: Reviews, 2012. 18(3): p. 155-66.
5. Bailey, A.M., M. Mendicino, and P. Au, An FDA perspective on preclinical development of cell-based regenerative medicine products. Nat Biotechnol, 2014. 32(8): p. 721-3.
6. Mendelson, A. and P.S. Frenette, Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med, 2014. 20(8): p. 833-46.
7. Bajada., S., et al., Stem Cells in Regenerative Mediceine. Topics in Tissue Engineering, 2008. 4.
8. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002. 13(12): p. 4279-95.
9. Bunnell, B.A., et al., Adipose-derived stem cells: isolation, expansion and differentiation. Methods, 2008. 45(2): p. 115-20.
10. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20.
11. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
12. Thomson, M., et al., Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell, 2011. 145(6): p. 875-89.
13. Fortier, L.A., Stem cells: classifications, controversies, and clinical applications. Vet Surg, 2005. 34(5): p. 415-23.
14. Higuchi, A., et al., Stem Cell Therapies for Reversing Vision Loss. Trends Biotechnol, 2017. 35(11): p. 1102-1117.
15. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, 2012. 112(8): p. 4507-40.
16. Thomas, R.J., et al., Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng, 2009. 102(6): p. 1636-44.
17. Thomson., J.A., et al., Embryonic Stem Cell Lines Derived from Human Blastocyts. Science, 1998. 282(5395): p. 1145-7.
18. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7.
19. Maherali, N., et al., Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007. 1(1): p. 55-70.
20. Wernig, M., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007. 448(7151): p. 318-24.
21. MIZUNO., H., M. TOBITA., and A.C. UYSAL., Concise Review: Adipose-Derived Stem Cells as a Novel Tool for Future Regenerative Medicine. Stem Cells, 2012. 30(5): p. 804-10.
22. da Silva Meirelles, L., P.C. Chagastelles, and N.B. Nardi, Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci, 2006. 119(Pt 11): p. 2204-13.
23. Pittenger., M.F., et al., Multilineage Potential of Adult Human Mesenchymal Sten Cells. Science, 1999. 284(5411): p. 143-7.
24. Gimble, J.M., A.J. Katz, and B.A. Bunnell, Adipose-derived stem cells for regenerative medicine. Circ Res, 2007. 100(9): p. 1249-60.
25. Caplan, A.I., Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol, 2007. 213(2): p. 341-7.
26. Kratchmarova, I., et al., Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science, 2005. 308(5727): p. 1472-7.
27. Chevallier, N., et al., Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials, 2010. 31(2): p. 270-8.
28. Jiang., Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-49.
29. Caplan, A.I. and J.E. Dennis, Mesenchymal stem cells as trophic mediators. J Cell Biochem, 2006. 98(5): p. 1076-84.
30. Dolley-Sonneville, P.J., L.E. Romeo, and Z.K. Melkoumian, Synthetic surface for expansion of human mesenchymal stem cells in xeno-free, chemically defined culture conditions. PLoS One, 2013. 8(8): p. e70263.
31. Orbay, H., M. Tobita, and H. Mizuno, Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells Int, 2012. 2012: p. 461718.
32. Delo, D.M., et al., Amniotic Fluid and Placental Stem Cells. 2006. 419: p. 426-438.
33. ERICES., A., P. CONGET., and J.J. MINGUELL., Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 2000. 109(1): p. 235-42.
34. Salingcarnboriboon, R., Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Experimental Cell Research, 2003. 287(2): p. 289-300.
35. Bari., C.D., F.D.A.P. Tylzanowski., and F.P. Luyten., Multipotent Mesenchymal Stem Cells From Adult Human Synovial Membrane. ARTHRITIS & RHEUMATISM, 2001. 44(8): p. 1928-42.
36. Seo, B.-M., et al., Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet, 2004. 364(9429): p. 149-155.
37. Asakura., A., M. Komaki., and M.A. Rudnicki., Muscle satellite cells are multipotential stem cells that exhibit myogenic, ostogenic, and adipogenic differentiaion. Differentiaion, 2001. 68(4-5): p. 245-53.
38. Toma., J.G., et al., Isolation of multipotent adult stem cells from the dermis of mammlian skin. Natue Cell Biology, 2011. 3(9): p. 778-84.
39. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006. 24(5): p. 1294-301.
40. Hildner, F., et al., Human platelet lysate successfully promotes proliferation and subsequent chondrogenic differentiation of adipose-derived stem cells: a comparison with articular chondrocytes. J Tissue Eng Regen Med, 2015. 9(7): p. 808-18.
41. ZUK., P.A., et al., Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Engineering, 2001. 7(2): p. 211-28.
42. Dai, R., et al., Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells Int, 2016. 2016: p. 6737345.
43. Zhu, Y., et al., Adipose?derived stem cell: a better stem cell than BMSC. Cell biochemistry and function, 2008. 26(6): p. 664-675.
44. Li, C.Y., et al., Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther, 2015. 6: p. 55.
45. Cheng, N.C., S. Wang, and T.H. Young, The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 2012. 33(6): p. 1748-58.
46. Strem., B.M., et al., Multipotential differentiaion of adipose tissue-derived stem cells. The Keio Journal of Medicine, 2005. 54(3): p. 132-41.
47. Jonsdottir-Buch, S.M., R. Lieder, and O.E. Sigurjonsson, Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells. PLoS One, 2013. 8(7): p. e68984.
48. Yu, J., et al., Stemness and transdifferentiation of adipose-derived stem cells using L-ascorbic acid 2-phosphate-induced cell sheet formation. Biomaterials, 2014. 35(11): p. 3516-26.
49. Lu., Z., et al., Collagen Type II Enhances Chondrogenesis in Adipose Tissue–Derived Stem Cells by Affecting Cell Shape. Tissue Engineering : Part A, 2010. 16(1): p. 81-90.
50. Chen., C.W., et al., Type I and II collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells. Journal of Orthopaedic esearch, 2005. 23(2): p. 446-53.
51. Bajek, A., et al., Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Arch Immunol Ther Exp (Warsz), 2016. 64(6): p. 443-454.
52. Wang, C., et al., Evaluation of human platelet lysate and dimethyl sulfoxide as cryoprotectants for the cryopreservation of human adipose-derived stem cells. Biochem Biophys Res Commun, 2017. 491(1): p. 198-203.
53. Naaijkens, B.A., et al., Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications. Cell Tissue Res, 2012. 348(1): p. 119-30.
54. Frese, L., et al., Are adipose-derived stem cells cultivated in human platelet lysate suitable for heart valve tissue engineering? Journal of Tissue Engineering and Regenerative Medicine, 2017. 11(8): p. 2193-2203.
55. Gimble, J.M., Adipose tissue-derived therapeutics. Expert Opinion on Biological Therapy, 2003. 3(5): p. 705-13.
56. MIZUNO., H., M. TOBITA., and A.C. UYSAL., Adipose-Derived Stem Cells as a Novel Tool for Future Regenerative Medicine. Stem Cells, 2012. 30: p. 804-10.
57. Zuk, P., Adipose-Derived Stem Cells in Tissue Regeneration: A Review. ISRN Stem Cells, 2013. 2013: p. 1-35.
58. Abagnale, G., et al., Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials, 2015. 61: p. 316-26.
59. Zack-Williams, S.D., P.E. Butler, and D.M. Kalaskar, Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells, 2015. 7(1): p. 51-64.
60. Feng, N., et al., Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev, 2014. 23(5): p. 515-29.
61. Robell, M., Metabolism of Isolated Fat Cells II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 1966. 241(1): p. 130-9.
62. Robell, M., Metabolism of Isolated Fat Cells III. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 1966. 241(1): p. 140-2.
63. Robell, M., Metabolism of Isolated Fat Cells IV. Regulation of release of protein by lipolytic hormones and insulin THE JOURNALS OF BIOLOGICAL CHEMISTRY 1966. 241(17): p. 3909-17.
64. Van., R.L.R., C.E. Bayliss., and B.A.K. Roncari., Cytological and enzymological characterization of adult human adipocyte precursors in culture. The Journal of Clinical Investigation, 1976. 58(3): p. 699-704.
65. Hauner., H., et al., Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. The Journal of Clinical Investigation, 1989. 84(5): p. 1663-70.
66. Naderi, N., et al., The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J, 2017. 14(1): p. 112-124.
67. McIntosh, K., et al., The immunogenicity of human adipose?derived cells: temporal changes in vitro. Stem cells, 2006. 24(5): p. 1246-1253.
68. Mitchell, J.B., et al., Immunophenotype of human adipose?derived cells: temporal changes in stromal?associated and stem cell–associated markers. Stem cells, 2006. 24(2): p. 376-385.
69. Yoshimura, K., et al., Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. Journal of cellular physiology, 2006. 208(1): p. 64-76.
70. Young, H.E., et al., Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC class-I. Proceedings of the Society for Experimental Biology and Medicine, 1999. 221(1): p. 63-72.
71. Zannettino, A., et al., Multipotential human adipose?derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of cellular physiology, 2008. 214(2): p. 413-421.
72. Katz, A.J., et al., Cell surface and transcriptional characterization of human adipose?derived adherent stromal (hADAS) cells. Stem cells, 2005. 23(3): p. 412-423.
73. Varma, M.J.O., et al., Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem cells and development, 2007. 16(1): p. 91-104.
74. Gronthos, S., et al., Surface protein characterization of human adipose tissue?derived stromal cells. Journal of cellular physiology, 2001. 189(1): p. 54-63.
75. Aust, L., et al., Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 2004. 6(1): p. 7-14.
76. M Bailey, A., S. Kapur, and A. J Katz, Characterization of adipose-derived stem cells: an update. Current stem cell research & therapy, 2010. 5(2): p. 95-102.
77. Meyerrose, T.E., et al., In Vivo Distribution of Human Adipose?Derived Mesenchymal Stem Cells in Novel Xenotransplantation Models. Stem cells, 2007. 25(1): p. 220-227.
78. Freitas, C.S. and S.R. Dalmau, Multiple sources of non-embryonic multipotent stem cells: processed lipoaspirates and dermis as promising alternatives to bone-marrow-derived cell therapies. Cell and tissue research, 2006. 325(3): p. 403-411.
79. Folgiero, V., et al., Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Medicine, 2010. 1(1): p. 3-14.
80. Zimmerlin, L., et al., Stromal vascular progenitors in adult human adipose tissue. Cytometry Part A, 2010. 77(1): p. 22-30.
81. Wagner, W., et al., Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental hematology, 2005. 33(11): p. 1402-1416.
82. Musina, R., E. Bekchanova, and G. Sukhikh, Comparison of mesenchymal stem cells obtained from different human tissues. Bulletin of experimental biology and medicine, 2005. 139(4): p. 504-509.
83. Alipour, R., et al., Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells. International journal of preventive medicine, 2010. 1(3): p. 164.
84. Kim, Y.J., et al., Role of CD9 in proliferation and proangiogenic action of human adipose-derived mesenchymal stem cells. Pflugers Archiv-European Journal of Physiology, 2007. 455(2): p. 283-296.
85. Basciano, L., et al., Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC cell biology, 2011. 12(1): p. 12.
86. Deans, R.J. and A.B. Moseley, Mesenchymal stem cells: biology and potential clinical uses. Experimental hematology, 2000. 28(8): p. 875-884.
87. Jones, E.A., et al., Optimization of a flow cytometry?based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry Part B: Clinical Cytometry, 2006. 70(6): p. 391-399.
88. Bernardo, M.E., et al., Human bone marrow–derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer research, 2007. 67(19): p. 9142-9149.
89. Delorme, B., et al., Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 2008. 111(5): p. 2631-2635.
90. Mizuno, H., Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials. Current opinion in molecular therapeutics, 2010. 12(4): p. 442-449.
91. Dragoo, J., et al., Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. Bone & Joint Journal, 2003. 85(5): p. 740-747.
92. A Brayfield, C., K. G Marra, and J. Peter Rubin, Adipose tissue regeneration. Current stem cell research & therapy, 2010. 5(2): p. 116-121.
93. Cherubino, M. and K.G. Marra, Adipose-derived stem cells for soft tissue reconstruction. 2009.
94. Higuchi, A., et al., Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Invest, 2017. 97(10): p. 1167-1179.
95. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental cell, 2004. 6(4): p. 483-495.
96. De Ugarte, D.A., et al., Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells tissues organs, 2003. 174(3): p. 101-109.
97. De Ugarte, D.A., et al., Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunology letters, 2003. 89(2-3): p. 267-270.
98. Annaz, B., et al., Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. Journal of Microscopy, 2004. 215(1): p. 100-110.
99. Lian, J.B. and G.S. Stein, Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. The Iowa orthopaedic journal, 1995. 15: p. 118.
100. Jaiswal., R.K., et al., Adult Human Mesenchymal Stem Cell Differentiation to the Osteogenic or Adipogenic Lineage Is Regulated by Mitogen-activated Protein Kinase. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2000. 275(13): p. 9645-52.
101. Mochizuki, T., et al., Higher chondrogenic potential of fibrous synovium–and adipose synovium–derived cells compared with subcutaneous fat–derived cells: Distinguishing properties of mesenchymal stem cells in humans. Arthritis & Rheumatology, 2006. 54(3): p. 843-853.
102. Hildner, F., et al., FGF?2 abolishes the chondrogenic effect of combined BMP?6 and TGF?β in human adipose derived stem cells. Journal of biomedical materials research Part A, 2010. 94(3): p. 978-987.
103. Singh, P. and J.E. Schwarzbauer, Fibronectin and stem cell differentiation–lessons from chondrogenesis. J Cell Sci, 2012. 125(16): p. 3703-3712.
104. Rosso, F., et al., From cell–ECM interactions to tissue engineering. Journal of cellular physiology, 2004. 199(2): p. 174-180.
105. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-1890.
106. Kleinman, H.K. and G.R. Martin. Matrigel: basement membrane matrix with biological activity. in Seminars in cancer biology. 2005. Elsevier.
107. Shoulders, M.D. and R.T. Raines, Collagen structure and stability. Annual review of biochemistry, 2009. 78: p. 929-958.
108. Di Lullo, G.A., et al., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. Journal of Biological Chemistry, 2002. 277(6): p. 4223-4231.
109. Veit, G., et al., Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. Journal of Biological Chemistry, 2006. 281(6): p. 3494-3504.
110. Brinckmann, J., Collagens at a glance, in Collagen. 2005, Springer. p. 1-6.
111. Sefcik, L.S., et al., Collagen nanofibres are a biomimetic substrate for the serum?free osteogenic differentiation of human adipose stem cells. Journal of tissue engineering and regenerative medicine, 2008. 2(4): p. 210-220.
112. Gutman, A. and A.R. Kornblihtt, Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA. Proceedings of the National Academy of Sciences, 1987. 84(20): p. 7179-7182.
113. Ruoslahti, E. and M.D. Pierschbacher, New perspectives in cell adhesion: RGD and integrins. Science, 1987. 238(4826): p. 491-497.
114. Park, I.-S., et al., The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials, 2009. 30(36): p. 6835-6843.
115. Tate, C.C., et al., Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. Journal of tissue engineering and regenerative medicine, 2009. 3(3): p. 208-217.
116. Sato, T., et al., Role of glycosaminoglycan and fibronectin in endothelial cell growth. Experimental and molecular pathology, 1987. 47(2): p. 202-210.
117. Koc, O. and H. Lazarus, Mesenchymal stem cells: heading into the clinic. Bone marrow transplantation, 2001. 27(3): p. 235.
118. Rauch, C., et al., Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media. ALTEX-Alternatives to Animal Experimentation, 2011. 28(4): p. 305.
119. Selvaggi, T.A., R.E. Walker, and T.A. Fleisher, Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus–infected patients given syngeneic lymphocyte infusions. Blood, 1997. 89(3): p. 776-779.
120. Schallmoser, K. and D. Strunk, Generation of a pool of human platelet lysate and efficient use in cell culture, in Basic Cell Culture Protocols. 2013, Springer. p. 349-362.
121. Bieback, K., et al., Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem cells, 2009. 27(9): p. 2331-2341.
122. Burnouf, T., et al., Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials, 2016. 76: p. 371-87.
123. Gimbrone, M.A., et al., Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature, 1969. 222: p. 33-36.
124. Hara, Y., M. Steiner, and M. Baldini, Platelets as a source of growth-promoting factor (s) for tumor cells. Cancer research, 1980. 40(4): p. 1212-1216.
125. Umeno, Y., A. Okuda, and G. Kimura, Proliferative behaviour of fibroblasts in plasma-rich culture medium. Journal of cell science, 1989. 94(3): p. 567-575.
126. Mannello, F. and G.A. Tonti, Concise Review: No Breakthroughs for Human Mesenchymal and Embryonic Stem Cell Culture: Conditioned Medium, Feeder Layer, or Feeder?Free; Medium with Fetal Calf Serum, Human Serum, or Enriched Plasma; Serum?Free, Serum Replacement Nonconditioned Medium, or Ad Hoc Formula? All That Glitters Is Not Gold! Stem cells, 2007. 25(7): p. 1603-1609.
127. Shih, D.T.-B. and T. Burnouf, Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. New biotechnology, 2015. 32(1): p. 199-211.
128. Mishra, A., et al., Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Engineering Part C: Methods, 2009. 15(3): p. 431-435.
129. Stute, N., et al., Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Experimental hematology, 2004. 32(12): p. 1212-1225.
130. Shahdadfar, A., et al., In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem cells, 2005. 23(9): p. 1357-1366.
131. Kohl, S., EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDICINES & HEALTHCARE (EDQM): FINAL REPORT OF THE PHARMACEUTICAL CARE QUALITY INDICATORS PROJECT PUBLISHED. 2018, BMJ PUBLISHING GROUP BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND.
132. Azuma, H., et al., Platelet additive solution–Electrolytes. Transfusion and Apheresis Science, 2011. 44(3): p. 277-281.
133. Eriksson, L. and C.F. Hogman, Platelet Concentrates in an Additive Solution Prepared from Pooled Buffy Coats. Vox sanguinis, 1990. 59(3): p. 140-145.
134. Horn, P., et al., Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy, 2010. 12(7): p. 888-98.
135. Schallmoser, K., et al., Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion, 2007. 47(8): p. 1436-46.
136. Doucet, C., et al., Platelet lysates promote mesenchymal stem cell expansion: A safety substitute for animal serum in cell?based therapy applications. Journal of cellular physiology, 2005. 205(2): p. 228-236.
137. Kilian, O., et al., Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro. European journal of medical research, 2004. 9(7): p. 337-344.
138. Van Pham, P., et al., Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem cell research & therapy, 2013. 4(4): p. 91.
139. Cervelli, V., et al., Platelet?rich plasma greatly potentiates insulin?induced adipogenic differentiation of human adipose?derived stem cells through a serine/threonine kinase Akt?dependent mechanism and promotes clinical fat graft maintenance. Stem cells translational medicine, 2012. 1(3): p. 206-220.
140. King, G.L. and S. Buchwald, Characterization and partial purification of an endothelial cell growth factor from human platelets. The Journal of clinical investigation, 1984. 73(2): p. 392-396.
141. Luttenberger, T., et al., Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells: implications in pathogenesis of pancreas fibrosis. Laboratory investigation, 2000. 80(1): p. 47.
142. Bernardi, M., et al., Production of human platelet lysate by use of ultrasound for ex vivo expansion of human bone marrow–derived mesenchymal stromal cells. Cytotherapy, 2013. 15(8): p. 920-929.
143. Schallmoser, K., et al., Rapid large-scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum. Tissue Engineering Part C: Methods, 2008. 14(3): p. 185-196.
144. Hemeda, H., et al., Heparin concentration is critical for cell culture with human platelet lysate. Cytotherapy, 2013. 15(9): p. 1174-1181.
145. Burnouf, T., et al., A chromatographically purified human TGF?β1 fraction from virally inactivated platelet lysates. Vox sanguinis, 2011. 101(3): p. 215-220.
146. Burnouf, T., et al., A virally inactivated platelet?derived growth factor/vascular endothelial growth factor concentrate fractionated from human platelets. Transfusion, 2010. 50(8): p. 1702-1711.
147. Burnouf, T., et al., Human blood-derived fibrin releasates: composition and use for the culture of cell lines and human primary cells. Biologicals, 2012. 40(1): p. 21-30.
148. Burnouf, T., et al., Solvent/detergent treatment of platelet concentrates enhances the release of growth factors. Transfusion, 2008. 48(6): p. 1090-1098.
149. Weibrich, G., et al., Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. Journal of cranio-maxillo-facial surgery, 2002. 30(2): p. 97-102.
150. Chou, M.L., T. Burnouf, and T.J. Wang, Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate. PLoS One, 2014. 9(6): p. e99145.
151. Burnouf, T., et al., Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood reviews, 2013. 27(2): p. 77-89.
152. Chen, D.-C., et al., Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials, 2014. 35(14): p. 4278-4287.
153. Guo, W. and F.G. Giancotti, Integrin signalling during tumour progression. Nature reviews Molecular cell biology, 2004. 5(10): p. 816.
154. Zaky, S.H., et al., Platelet lysate favours in vitro expansion of human bone marrow stromal cells for bone and cartilage engineering. J Tissue Eng Regen Med, 2008. 2(8): p. 472-81.
155. Burnouf, T., et al., Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials, 2016. 76: p. 371-387.
156. XIE, X.j., et al., Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacologica Sinica, 2006. 27(9): p. 1153-1158.
157. Jang, S., et al., Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC cell biology, 2010. 11(1): p. 25.
158. Qian, L. and W.M. Saltzman, Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification. Biomaterials, 2004. 25(7-8): p. 1331-1337.
159. Krampera, M., et al., Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone, 2007. 40(2): p. 382-390.
160. Takashima, Y., et al., Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 2007. 129(7): p. 1377-1388.
161. Bongiorno, T., et al., Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation. Journal of biomechanics, 2014. 47(9): p. 2197-2204.
指導教授 陳儀帆 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明