博碩士論文 105622002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.142.136.229
姓名 楊志賢(Zhi-Xian Yang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用大地電磁法探勘宜蘭平原南部之地熱構造研究
(The geothermal structure inferred from magnetotelluric data beneath southern part of Ilan Plain, north-eastern Taiwan)
相關論文
★ 利用RTL (Region-Time-Length) 演算法 探討921 集集大地震之前兆現象★ 集集餘震b值與碎形維度分析
★ 應用太空大地測量法探討台南地區之地表變形★ 電容耦合地電阻探測系統應用於地下管線與坑道之研究
★ 以交叉對比分析地震的時空分佈行態★ 利用PI方法研究地震前兆活動
★ 臺灣深部電性構造及其板塊構造意義★ 利用Pattern Informatics研究1999年台灣集集與2008年中國汶川地震之前兆現象
★ 模擬地震前兆行為之數值模型★ 地電法於地下掩埋物調查之研究
★ 利用經驗模態分解法(EMD)探討潮汐效應對地震活動的影響★ 利用LURR方法探討臺灣1994年後大地震之前兆現象
★ 利用遠距沙堆模型探討特徵地震之準週期性★ 台灣天然電磁場觀測研究
★ 一維滑塊模型事件叢集特性分析與復發時間統計★ TCDP井下地震儀之微地震紀錄的特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 宜蘭平原區為台灣最具地熱發電潛力的區域之一,從過去大地測量、速度構造、空中及大地磁測、震測等地球物理方法皆揭露了宜蘭平原地下可能的地熱潛藏分布。本研究鎖定宜蘭紅柴林地區,選定東西向12公里、南北向6公里的範圍作為研究區域,利用大地電磁法(Magnetotellurics, MT)進行地下電阻率探勘研究,藉由國外諸多地熱與岩石電阻率構造之相關研究經驗,對比宜蘭平原區地下電阻率構造的分布及特徵,研判可能的地熱儲熱區及導水通道。研究期間重新整理過去在宜蘭平原區內量測的MT資料,淘汰資料品質較差、受人為雜訊干擾較嚴重的測點,並於今年度4月、7月及9月在研究區域內增加新MT測點,同時使用遠端參考技術提升資料品質,最後結合新、舊測站中品質較佳的資料,將各測站資料平滑化以去除區域性雜訊後,進行全三維模型逆推。由觀測資料對比逆推模型預測資料的擬和程度分析,顯示逆推結果對於觀測資料的擬合程度良好,此逆推模型可信度高。
  在蘭陽溪南方可發現一深一淺垂直分布的東西向延伸低電阻帶,此低電阻區電阻率大約為10 Ω-m,並於此低電阻率下方可發現一同樣為東西向延伸、電阻率略高的低電阻率構造,電阻率大約為30至100 Ω-m,此二低電阻構造並且被極高電阻率構造包圍(>1000 Ω-m),低電阻率構造之東西向延伸趨勢與火成岩侵入造成之高磁力異常延伸趨勢相似,暗示低電阻率構造與入侵火成岩體之關係密切,另由淺部低電阻率構造向北延伸之趨勢,對比於鄰近地熱觀測井井溫剖面,說明了低電阻率構造確實由高溫構造所導致,高溫構造向北延伸至耕莘井下方,並略為延伸至二號井,造成升溫速率較背景地溫梯度快速。將宜蘭地下電性構造對比其他國家於地熱區電阻率構造研究,此低電阻構造可能與黏土礦物因接觸高溫熱液產生熱液蝕變作用有關,生成低電阻率礦物進而導致小區域的異常低電阻帶,研判此低電阻帶為南宜蘭平原地熱潛藏可能性最高的區域。
摘要(英) Ilan plain is identified as a western extension of the Okinawa Trough in the northern Taiwan subduction system and has been considered as one of the most productive geothermal area in Taiwan. An east-west extension magma-like body caused by the westward of the Okinawa Trough has been revealed from seismic and geomagnetic studies. Some geothermal wells have been drilled around this area, but the temperature and water volume are lower than that expected, indicating the limitation of the distribution of the geothermal providing area. To find out the location of the geothermal providing area, we investigated the electrical resistivity structure beneath Ilan Plain using the magnetotelluric method. At data collecting steps, we carried out the survey of more than 100 sites, and employeed more than one sites for remote reference technique to promote data quality. After carefully visual inspection of the data of each sites, 84 sites were remnant with perfect data quality within study area. At data processing steps, we used moving average method to keep the smoothness of the data based on basic conceptual of MT method. MT data were analyzed and modeled using 3D inversion scheme. The fitness revealed by the pseudosection of the observed and model predicted data is good at relative shallow part, indicating this resistivity model is reasonable and can be accepted. The result shows that the geothermal providing area is a few hundreds of meters southward from those observation wells. The northward extension of the shallow conductor can be explained by the trace of hot water, and is matched to the temperature logging data. Comparing with the geothermal resistivity conceptual model, the shallow conductor(~10 Ω-m) and relative deeper conductor(~30-100 Ω-m) can be related to secondary mineralization altered by geothermal fluids which is typically investigated from geothermal area. The shallow conductor is related to the smectite-zeolite zone(70-220°C), and the relative deeper conductor is related to chlorite-illite zone(180-240°C). We suggest that this geothermal providing area may connected to deeper intrusive magma body.
關鍵字(中) ★ 大地電磁法
★ 電阻率
★ 地熱構造
★ 熱液蝕變
關鍵字(英) ★ magnetotellurics
★ electrical resistivity
★ geothermal structure
★ thermal alteration
論文目次 中文摘要 ........................................................................................................... i
英文摘要 ........................................................................................................... ii
誌謝 ........................................................................................................... iii
目錄 ........................................................................................................... iv
圖目錄 ........................................................................................................... vi
表目錄 ........................................................................................................... viii
第一章、 緒論................................................................................................... 1
  1.1 研究動機與目的............................................................................... 1
  1.1.1 台灣東北部地體構造與區域地質背景........................................... 1
  1.1.2 大地電磁法於地熱探勘之應用及目標........................................... 4
  1.1.3 台灣地熱能源發展潛力與現況....................................................... 6
  1.1.4 第二期國家型能源計畫................................................................... 7
  1.2 本文說明........................................................................................... 8
第二章、 大地電磁理論方法........................................................................... 25
  2.1 大地電磁法理論............................................................................... 25
  2.1.1 大地電磁法電磁場源....................................................................... 25
  2.1.2 大地電磁法基本假設....................................................................... 25
  2.1.3 馬克士威方程式............................................................................... 26
  2.1.4 均勻介質中傳遞的電磁場............................................................... 27
  2.1.5 集膚深度........................................................................................... 31
  2.2 大地電磁法的轉換函數................................................................... 31
  2.2.1 阻抗................................................................................................... 31
  2.2.2 阻抗張量........................................................................................... 32
  2.2.3 視電阻率........................................................................................... 33
  2.2.4 相位................................................................................................... 33
  2.2.5 感應指針........................................................................................... 34
  2.3 地球物理模型逆推........................................................................... 34
  2.3.1 逆推理論........................................................................................... 35
  2.3.2 逆推方法........................................................................................... 37
第三章、 大地電磁資料處理與電性維度分析............................................... 43
  3.1 大地電磁資料處理........................................................................... 43
  3.1.1 頻譜分析........................................................................................... 44
  3.1.2 遠端參考法....................................................................................... 45
  3.1.3 穩健估算........................................................................................... 46
  3.1.4 研究區域及測站資訊....................................................................... 48
  3.1.5 資料品質判斷及挑選....................................................................... 48
  3.2 大地電磁電性維度分析................................................................... 49
  3.2.1 維度分析........................................................................................... 50
  3.2.2 相位張量分解................................................................................... 52
  3.2.3 宜蘭MT資料維度........................................................................... 54
第四章、 大地電磁資料逆推........................................................................... 91
  4.1 阻抗平滑化....................................................................................... 91
  4.2 大地電磁逆推模型測試................................................................... 91
  4.2.1 大地電磁逆推測點陣列測試........................................................... 92
  4.2.2 資料擬合及模型擬似剖面............................................................... 93
  4.2.3 模型電阻率異常體敏感度測試....................................................... 95
第五章、 討論與結論....................................................................................... 122
  5.1 地熱區岩石電性影響因素............................................................... 122
  5.2 電性構造解釋與討論....................................................................... 123
  5.2.1 高電阻率構造R1............................................................................. 124
  5.2.2 淺部及深部低電阻率構造C1、C2................................................. 124
  5.2.3 斜向低電阻率構造C3..................................................................... 126
  5.2.4 東西向電阻率模型........................................................................... 127
  5.3 結論................................................................................................... 127
參考文獻 ........................................................................................................... 144
附錄A 維逆推擬合結果............................................................................... 150
附錄B 測站原始資料................................................................................... 161
參考文獻 Aster, R. C., B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 2nd ed., Academic Press, 360 pp., 2013.
Archie, G. E., “The electrical resistivity log as an aid in determining some reservoir characteristics”, Transactions of the AIME, Vol. 146, No. 1, pp. 54-62, 1941.
Bahr, K., “Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion”, J. Geophys. Res., Vol. 62, No. 2, pp. 119-127, 1988.
Bahr, K., “Geological noise in magnetotelluric data: a classification of distortion types”, Physics of the Earth and Planetary Interiors, Vol. 66, No. 1-2, pp. 24-38, 1991.
Bayrak, M., U. Serpen, and O. M. ?lk???k, “Two-dimensional resistivity imaging in the K?z?ldere geothermal field by MT and DC methods”, J. Volcanology and Geothermal Res., Vol. 204, pp. 1-11, doi: 10.1016/j.jvolgeores.2011.05.005, 2011.
Bertrand, E., M. Unsworth, C. W. Chiang, C. S. Chen, C. C. Chen, F. Wu, E. Turkog? lu, H. L. Hsu, and G. Hill, “Magnetotelluric evidence for thick-skinned tectonics in central Taiwan”, Geology, Vol. 37, No. 8, pp. 711-714, doi: 10.1130/G25755A.1, 2009
Bertrand, E. A., M. J. Unsworth, C. W. Chiang, C. S. Chen, C. C. Chen, F. T. Wu, E. Turkog? lu, H. L. Hsu, and G. J. Hill, “Magnetotelluric imaging beneath the Taiwan orogen: An arc-continent collision”, J. Geophys. Res., Vol. 117, doi: 10.1029/2011JB008688, 2012.
Cagniard, L., “Basic theory of the magneto-telluric method of geophysical prospecting”, Geophysics, Vol. 18, pp. 605-635, 1953.
Caldwell, T. G., H. M. Bibby, and C. Brown, “The magnetotelluric phase tensor”, Geophys. J. International, Vol. 158, No. 2, pp.457-469, 2004.
Chang, P. Y., W. Lo, S. R. Song, K. R. Ho, C. S. Wu, C. S. Chen, Y. C. Lai, H. F. Chen, and H. Y. Lu, “Evaluating the Chingshui geothermal reservoir in northeast Taiwan with a 3D integrated geophysical visualization model”, Geothermics, Vol. 50, pp. 91-100, 2014.
Chave, A. D., D. J. Thomson, and M. E. Ander, “On the robust estimation of power spectra, coherences, and transfer functions”, J. Geophys. Res., Vol. 92, No. B1, pp. 633-648, 1987.
Chen, C. H. “Geology and geothermal power potential of the Tatun volcanic region”, Geothermics, Vol. 2, pp. 1134-1143. 1970.
Chen, C. C., C. S. Chen, and C. F. Shieh, “Crustal electrical conductors, Crustal Fluids and 1999 Chi-Chi, Taiwan, Earthquake”, Terr. Atmos. Ocean., Vol. 13, No. 3, pp. 367-374, 2002.
Chen, C. C., S. C. Chi, C. S. Chen, and C. H. Yang, “Electrical structures of the source area of the 1999 Chi-Chi, Taiwan earthquake: Spatial correlation between crustal conductors and aftershocks”, Tectonophysics, Vol. 443, pp. 280-288, doi: 10.1016/j.tecto.2007.01.018, 2007.
Chiang, C. W., M. J. Unsworth, C. S. Chen, C. C. Chen, A. T. S. Lin, and H. L. Hsu, “Fault Zone Resistivity Structure and Monitoring at the Taiwan Chelungpu Drilling Project (TCDP)”, Terr. Atmos. Ocean. Sci., Vol. 19, No. 5, pp. 473-479, doi: 10.3319/TAO.2008.19.5.473(T), 2008.
Chiang, C. W., C. C. Chen, M. Unsworth, E. Bertrand, C. S. Chen, T. D. Kieu, and H. L. Hsu, “The Deep Electrical Structure of Southern Taiwan and Its Tectonic Implications”, Terr. Atmos. Ocean. Sci., Vol. 21, No. 6, pp. 879-895, doi: 10.3319/TAO.2010.02.25.01(T), 2010.
Chiang, C. W., H. L. Hsu, and C. C. Chen, “An Investigation of the 3D Electrical Resistivity Structure in the Chingshui Geothermal Area, NE Taiwan”, Terr. Atmos. Ocean. Sci., Vol. 26, No. 3, pp. 269-281, doi: 10.3319/TAO.2014.12.09.01(T), 2015.
Clarke, J., T. D. Gamble, W. M. Goubau, R. H. Koch, and R. F. Miracky, “Remote-reference magnetotellurics: equipment and procedures”, Geophysical Prospecting, Vol. 31, No. 1, pp. 149-170, 1983.
Constable, S. C., R. L. Parker, and C. G. Constable, “Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data” Geophysics, Vol. 52, pp. 289-300, 1987.
Egbert, G. D., and J. R. Booker, “Robust estimation of geomagnetic transfer functions”, Geophys. J. International, Vol. 87, No. 1, pp. 173-194, 1986.
Egbert, G. D., and A. Kelbert, “Computational recipes for electromagnetic inverse problems” Geophys. J. International, Vol. 189, No. 1, pp. 251-267, 2012.
Frischknecht, F.C., “Fields about an oscillating magnetic dipole over a two-layered earth and application of ground and airborne surveys”, Colorado School Mines Quart, Vol. 62, No. 1, pp. 1–326, 1967.
Gamble, T. D., W. M. Goubau, and J. Clarke, “Magnetotellurics with a remote magnetic reference”, Geophysics, Vol. 44, No. 1, pp. 53-68, 1979.
Goubau, W. M., T. D. Thomas, and J. Clarke, “Magnetotelluric data analysis: removal of bias”, Geophysics, Vol. 43, No. 6, pp. 1157-1166, 1978.
Grim, R. E., Clay mineralogy, Mcgraw-Hill Book Company, Inc, New York, Toronto, London, 1953.
Harvey, C. C., and P. R. Browne, “Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand”, Clays and clay minerals, Vol. 39, No. 6, pp. 614-621, 1991.
Hou, C. S., J. C. Hu, K. E. Ching, Y. G. Chen, C. L. Chen, L. W. Cheng, C. L. Tang, S. H. Huang, and C. H. Lo, “The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough”, Tectonophysics, Vol. 466, pp. 344-355, doi: 10.1016/j.tecto.2007.11.022, 2009.
Huang, H. H., J. B. H. Shyu, Y. M. Wu, C. H. Chang, and Y. G. Chen, “Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension”, J. Geophys. Res., Vol. 117, doi: 10.1029/2011JB008852, 2012.
Huber, P. J., Robust Statistics, Wiley, New York, 1981.
Jones, A. G., A. D. Chave, G. Egbert, D. Auld, and K. Bahr, “A comparison of techniques for magnetotelluric response function estimation”, J. Geophys. Res., Vol. 94, No. B10, pp. 201-213, 1989.
Kanda, W., Y. Tanaka, M. Utsugi, S. Takakura, T. Hashimoto, and H. Inoue, “A preparation zone for volcanic explosions beneath Naka-dake crater, Aso volcano, as inferred from magnetotelluric surveys”, J. Volcanology and Geothermal Res., Vol. 178, pp. 32-45, doi: 10.1016/j.jvolgeores.2008.01.022, 2008.
Kao, H., S. J. Shen, K. F. Ma, “Transition from oblique subduction to collision Earthquakes in the southern most Ryukyu arc-Taiwan region”, J. Geophys. Res., Vol. 103, No. B4, pp. 7211-7229, 1998.
Kao, H., G. C. Huang, and C. S. Liu, “Transition from oblique subduction to collision in the northern Luzon arc-Taiwan region Constraints from bathymetry and seismic observations”, J. Geophys. Res., Vol. 105, No. B2, pp. 3059-3079, 2000.
Kelbert, A., N. Meqbel, G. D. Egbert, and K. Tandon “ModEM: A modular system for inversion of electromagnetic geophysical data”, Computers & Geosciences, Vol. 66, pp. 40-53, 2014.
Lackschewitz, K. S., A. Singer, R. Botz, D. Garbe-Schonberg, P. Stoffers, and K. Horz, “Formation and transformation of clay minerals in the hydrothermal deposits of Middle Valley, Juan de Fuca Ridge”, Economic Geology, Vol. 95, No. 2, pp. 361-389, 2000.
Larsen, J. C., “Low Frequency (0‧ 1–6‧ 0 cpd) Electromagnetic Study of Deep Mantle Electrical Conductivity Beneath the Hawaiian Islands”, Geophys. J. International, Vol. 43, No. 1, pp. 17-46, 1975.
Larsen, J. C., “Removal of local surface conductivity effects from low frequency mantle response curves”, Acta Geodaet., Geophys., Vol. 12, No. 1-3, pp. 183-186, 1977.
Larsen, J. C., R. L. Mackie, A. Manazella, A. Fiordelisi, and S. Rieven, “Robust smooth magnetotelluric transfer functions”, Geophys. J. International, Vol. 124, No. 3, pp. 801-819, 1996.
Lin, J. Y., S. K. Hsu, and J. C. Sibuet, “Melting features along the western Ryukyu slab edge (northeast Taiwan): tomographic evidence”, J. Geophys. Res., Vol. 109, doi: 10.1029/2004JB003260, 2004.
Mckay, A. J., 「Geoelectric Fields and Geomagnetically Induced Currents in the United Kingdom」, Ph.D. Thesis, University of Edinburgh, 2003.
McNeice, G. W., and A. G. Jones, “Multisite, multifrequency tensor decomposition of magnetotelluric data”, Geophysics, Vol. 66, No. 1, pp. 158-173, 2001.
Nesbitt, B. E., “Electrical resistivities of crustal fluids”, J. Geophys. Res., Vol. 98, No. B3, pp. 4301-4310, 1993.
Ogawa, Y., and T. Uchida, “A two-dimensional magnetotelluric inversion assuming Gaussian static shift”, Geophys. J. Int., Vol. 126, pp. 69-76, 1996.
Okada, H., Y. Yasuda, M. Yagi, and K. Kai, “Geology and fluid chemistry of the Fushime geothermal field, Kyushu, Japan” Geothermics, Vol. 29, No. 2, pp. 279-311, 2000.
Oskooi, B., L. B. Pedersen, M. Smirnov, K. Arnason, H. Eysteinsson, A. Manzella, and DGP Working Group. “The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland”, Physics of the Earth and Planetary Interiors, Vol. 150, pp. 183-195, doi: 10.1016/j.pepi.2004.08.027, 2005.
Palacky, G. J., Resistivity characteristics of geologic targets, in electromagnetic methods in applied geophysics theory, M. N. Nabighian, Ed., Soc. Explor. Geophys., Tulsa, Oklahoma, Vol. 1, pp. 53-129, 1988.
Parkinson, W. D., “Directions of rapid geomagnetic fluctuations”, Geophys. J. International, Vol. 2, No. 1, pp. 1-14, 1959.
Pellerin, L., J. M. Johnston, and G. W. Hohmann, “A numerical evaluation of electromagnetic methods in geothermal exploration”, Geophysics, Vol. 61, No. 1, pp. 121-130, 1996.
Rodi, W., and R. L. Mackie, “Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion”, Geophysics, Vol. 66, No. 1, pp. 174-187, 2001.
?ener, M., and A. I. Gevrek, “Distribution and significance of hydrothermal alteration minerals in the Tuzla hydrothermal system, Canakkale, Turkey” J. Volcanology and Geothermal Res., Vol. 96, No. 3-4, pp. 215-228, 2000.
Simpson, F., and K. Bahr, Practical Magnetotellurics, Cambridge University, UK, 2005.
Siripunvaraporn, W., and G. Egbert, “An efficient data-subspace inversion method for 2-D magnetotelluric data”, Geophysics, Vol. 65, No. 3, pp. 791-803, 2000.
Siripunvaraporn, W., G. Egbert, Y. Lenbury, and M. Uyeshima, “Three-dimensional magnetotelluric inversion: data-space method”, Physics of the Earth and planetary interiors, Vol. 150, No. 1-3, pp. 3-14, 2005.
Sordon, J., “Nature of mixed-layer clays and mechanisms of their formation and alteration”, Annu. Rev. Earth Planer. Sci., Vol. 27, pp. 19-53, 1999.
Spichak, V., and A. Manzella, “Electromagnetic sounding of geothermal zones”, J. Applied Geophys., Vol. 68, No. 4, pp. 459-478, 2009.
Stocco, S., A. Godio, and L. Sambuelli, “Modelling and compact inversion of magnetic data: A Matlab code”, Computers & Geosciences, Vol. 35, No. 10, pp. 2111-2118, 2009.
Swift, C. M., “A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States”, Massachusetts Institute of Technology, Doctoral dissertation, 1967.
Tikhonov, A. N., “On determining electrical characteristics of the deep layers of the earth’s crust”, Doklady, Vol. 73, No. 2, pp. 295-297, 1950.
Tong, L. T., S. Ouyang, T. R. Guo, C. R. Lee, K. H. Hu, C. L. Lee, and C. J. Wang, “Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan”, Terr. Atmos. Ocean. Sci., Vol. 19, No. 4, pp. 413-424, doi: 10.3319/TAO.2008.19.4.413(T), 2008.
Ussher, G., C. Harvey, R. Johnstone, and E. Anderson, “Understanding the resistivities observed in geothermal systems”, Proceedings World Geothermal Congress, pp. 1915-1920, 2000.
Vozoff, K., “The magnetotelluric method in the exploration of sedimentary basins”, Geophysics, Vol. 37, pp. 98-141, 1972.
Vozoff, K., The magnetotelluric method, Electromagnetic Methods in Applied Geophysics, Soc. Explor. Geophys., Tulsa, Oklahoma, Vol. 2B, pp. 641-712, 1991.
Wiese, H., “Geomagnetische tiefentellurik teil 2 : die streichrichtung der untergrundstrukturen des elektrischen widerstandes, erschlossen aus geomagnetischen variationen”, Geofis. Pura. Appl., Vol. 52, pp. 83-103, 1962.
Yu, S. B., H. Y. Chen, and L. C. Kuo, “Velocity field of GPS stations in the Taiwan area”, Tectonophysics, Vol. 274, pp. 41-59, 1997.
王乾盈、陳建志、顏宏元、石瑞銓,「宜蘭平原深層地熱鑽井及地球物理探勘」,地熱與天然氣水合物聯合成果發表會,99-100頁,國立台灣大學,台北市,2018年1月。
石政為,「利用反射震測探討宜蘭平原之基盤深度及構造演化」,國立中央大學,碩士論文,2011。
宋聖榮、羅偉、葉恩肇、吳逸民、劉聰桂、陳洲生、張?瑜,「宜蘭清水地熱能源研究:探勘技術平台的建立與深層地熱(2/3)」,行政院國家科學委員會,共425頁,2011。
宋聖榮,「台灣地熱能源發展的現況、展望與困境」,2016年,取自:http://163.32.57.16/earth/files/literature/15216.5352_3.00t0a-0x0W0a00010o0e00P00D.pdf。
宋聖榮、鄧屬予、羅偉、葉恩肇、王珮玲、劉佳玫,「宜蘭平原深層地熱探勘鑽井及地熱系統研究」,地熱與天然氣水合物聯合成果發表會,97頁,國立台灣大學,台北市,2018年1月。
徐漢倫,「台灣天然電磁場觀測研究」,國立中央大學,博士論文,2012。
張峻瑋,「利用反射震測探討宜蘭平原南部之基盤深度及斷層分佈」,國立中央大學,碩士論文,2010。
陳文山,「台灣地質概論」,社團法人中華民國地質學會,台北市大安區,2016。
陳宏宇、劉佳玫,「臺灣地熱潛能之發展」,台灣能源期刊,第一卷,第一期,第85-103頁,2013。
陳洲生、陳建志,宜蘭地區深層地熱資源調查及加強型地熱系統場址的評估,第二期能源國家型科技計劃,台北,2016。
陳建志,「大地電磁法應用於台灣地區地殼電性構造之研究」,國立中央大學,博士論文,1998。
黃家齊,「利用反射震測探討宜蘭三星紅柴林地熱地下構造」,國立中央大學,碩士論文,2015。
黃群鈞,「利用穩定氫、氧同位素探討宜蘭地區地下水之補注及台灣北部氫、氧同位素天水線之建立」,國立中興大學,碩士論文,2016。
劉佳玫,「台灣造山帶二氧化矽地表熱流分布及其隱示」,國立台灣大學,博士論文,2011。
鍾陳東,「宜蘭三星地熱地下構造探勘」,國立中央大學,碩士論文,2016
指導教授 陳建志(Chien-Chih Chen) 審核日期 2018-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明