博碩士論文 105622008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.147.70.250
姓名 陳麗帆(Li-Fan Chen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 藉由剪力波分離參數探究菲律賓民多洛島之上部地函非均向性
(Investigating the upper mantle anisotropy beneath NW Mindoro by measurements of shear wave splitting)
相關論文
★ 利用單位海嘯模擬方法建立台灣近海海嘯警報系統★ 由西太平洋地區T波觀測來探討其成因與遠震參數之關係
★ 利用表面波頻散分析探討馬尼拉海溝側向速度變化★ 利用短週期臨時地震觀測網分析菲律賓明多洛島地震分佈
★ 利用接收函數法分析遠震寬頻資料推估宜蘭平原地殼厚度★ 利用噪訊成像反演宜蘭平原上部地殼 三維高解析度S波速度構造
★ 菲律賓民都洛島西北地震地體和上部地函速度構造★ 利用TCDP井下地震儀陣列分析車籠埔斷層帶之非均向性
★ 利用匹配定位法探討 2017 Batangas 地震序列之完整活動度★ 以雙差分定位法重新定位2017 Batangas地震序列
★ 應用隨機滑移模型 於臺灣地區之機率式海嘯危害度分析★ 台灣東北部地下三維高解析度P波速度構造與其地體構造意涵
★ 印度尼西亞蘇拉威西島地震構造★ 利用地震與測地資料聯合逆推2022年九月關山地震與池上地震的破裂過程
★ 2021南投深部地震的構造意義★ 以二維地震波模擬探討臺灣東北部雙重P波之觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 馬尼拉海溝(Manila trench)南北兩端於不同時期因弧陸碰撞(arc-continent collision)而終止隱沒系統,於北端之台灣有充足的地震資料來分析複雜之雙隱沒系統,然而,位於馬尼拉海溝的南端卻相當缺乏地震觀測資料,因此,本研究於馬尼拉海溝南端之終點—民多洛島西北(NW Mindoro)陸續佈置寬頻地震站,加上中央研究院提供之測 站,共有五個寬頻地震站,紀錄2014年至現今之地震資料。藉由分析剪力波通過非均向性介質會分離出快波以及慢波之特性,並利用遠震波相SKS、SKKS以及近震波相、ScS、PcS與S來探究上部地函至接收端下之非均向性構造,進而了解馬尼拉海溝南端之地體動力過程。本研究之方法主要利用Bowman and Ando (1987)提出之波形交相關法(Waveform Cross-correlation Method, RC)以及Silver and Chan (1991)提出之特徵值法(Eigenvalue Method, EV)來求得剪力波分離之參數解(?,δt)。於研究結果中,RC法與EV法所得之剪力波分離參數差異不大,其平均分離時間差約為1.69秒;而快波極化方向之分佈座落於西北—東南至北北西—南南東方向,此趨勢平行於馬尼拉海溝南端。經由震波層析影像以及地震事件分佈之關係,可依據震波是否通過隱沒板塊與地函契來推論其非均向性之貢獻來源,若是沒通過隱沒帶,其快波極化方向反映之非均向性的貢獻可能來自馬尼拉海溝邊緣之海溝遷移(trench migration)所導致平行於海溝之地函流(mantle flow);若是波線主要通過隱沒板塊內部,則推測此非均向性的貢獻可能源自於漸新世(33 Ma)南中國海海脊之南北向及西北東南向之張裂過程中(Sibuet et al., 2016),將古非均向性紀錄於岩石圈內部(frozen-in anisotropy),隨著板塊隱沒至民多洛島西北底下而被觀測到。
摘要(英) Both the ends of the Manila trench are terminated by arc-continent collision at different inception times. In the north of the Manila trench, there are dense seismic stations around Taiwan, which can provide sufficient waveform data to analyze the complex subduction system beneath NE and SW Taiwan. In contrast, the lack of the seismic data on the southern end of the Manila trench makes us have strong motivation to deploy seismic stations on NW Mindoro where is located on the southern end of the Manila trench to collect more seismic data. As a result, there are total five broadband seismic stations deployed on the NW Mindoro including one station deployed by IES, recording the seismograms since 2014. By analyzing the measurements of shear wave splitting of teleseismic phases such as SKS and SKKS and regional phases such as ScS, PcS and S, we can investigate the anisotropy from the upper mantle up to crust beneath receiver sides, which could provide us with more information about the geodynamic process beneath this area. In our study, we use Waveform Cross-correlation Method (RC) proposed by Bowman and Ando (1987) and Eigenvalue Method (EV) proposed by Silver and Chan (1991) to obtain the shear wave splitting measurements (?,δt) including the fast wave polarization and splitting time between fast wave and slow wave. In our results, the average splitting time obtained from RC and EV method is around 1.69 s, which could roughly correspond to 170 km thickness of the anisotropic layer. The fast wave polarizations estimating by both methods are oriented between NNW-SSE and NW-SE directions which is roughly parallel to the southern end of Manila trench. From the P wave tomography and distribution of seismic events, we can judge whether the ray paths passing through the subducted slab and mantle wedge or not, and thus infer the contributions of anisotropy beneath NW Mindoro. The ray paths sampling most mantle wedge related to the asthenospheric flow induced by trench migration or little subducted slab may show the NW-SE trend of the fast directions. On the other hand, we suggest that the main contribution of anisotropy may come from the fossil spreading ridge of South China Sea (SCS) since Early Oligocene (33 Ma) (Sibuet et al., 2016) if the fast directions show NNW-SSE trend.
關鍵字(中) ★ 剪力波分離
★ 民多洛島
★ 上部地函非均向性
關鍵字(英) ★ Shear wave splitting
★ Mindoro
★ Upper mantle anisotropy
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 菲律賓民多洛島地體構造與地質背景 3
1.2.1 地體構造 3
1.2.2 地質背景 11
第二章 文獻回顧 14
2.1地震波非均向性之研究 14
2.2 剪力波分離原理及研究 18
2.3 南中國海(SCS)擴張之研究 21
第三章 研究方法及原理 26
3.1 波形交相關法 (Waveform Rotation–correlation Method, RC) 27
3.2 特徵值法 (Eigenvalue Method, EV) 29
3.3 橫向分量最小能量法 (Transverse Minimization Method, SC) 31
3.4 研究方法選擇 36
第四章 資料處理 37
4.1 資料來源與選取 37
4.2 資料處理及流程 43
4.2.1 SplitLab 軟體之應用流程 43
4.2.2 RC與EV於SplitLab之應用 48
第五章 研究結果與討論 52
5.1波形交相關法(RC)與特徵值法(EV)之剪力波分離結果 52
5.2 探討入射波與P波震波層析影像之關聯 73
第六章 結論 85
參考文獻 86
參考文獻 Anderson, M. L., Zandt, G., Triep, E., Fouch, M., & Beck, S. Anisotropy and mantle flow in the Chile?Argentina subduction zone from shear wave splitting analysis. Geophysical research letters, 31(23), 2004.
Ando, M. ScS polarization anisotropy around the Pacific Ocean. Journal of Physics of the Earth, 32(3), 179-195, 1984.
Ando, M., & Ishikawa, Y. OBSERVATIONS OF SHEAR-WAVE VELOCITY POLARIZATION ANISOTROPY BENEATH HONSHU, JAPAN. Journal of Physics of the Earth, 30(2), 191-199, 1982.
Ando, M., Ishikawa, Y., & Yamazaki, F. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. Journal of Geophysical Research: Solid Earth, 88(B7), 5850-5864, 1983.
Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. Evolution of the South China Sea: revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58, 599-611, 2014.
Barckhausen, U., & Roeser, H. A. Seafloor spreading anomalies in the South China Sea revisited. Continent-ocean interactions within East Asian marginal seas, 121-125, 2004.
Barrier, E., Huchon, P., & Aurelio, M. Philippine fault: a key for Philippine kinematics. Geology, 19(1), 32-35, 1991.
Bird, P., Quinton, N., Beeson, M., & Bristow, C. Mindoro: a rifted microcontinent in collision with the Philippines volcanic arc; basin evolution and hydrocarbon potential. Journal of Southeast Asian Earth Sciences, 8(1-4), 449-468, 1993.
Bochu, Y. TECTONIC EVOLUTION OF THE SOUTH CHINA SEA IN CENOZOIC [J]. Marine Geology & Quaternary Geology, 2, 1996.
Boudier, F., Ceuleneer, G., & Nicolas, A. Shear zones, thrusts and related magmatism in the Oman ophiolite: initiation of thrusting on an oceanic ridge. Tectonophysics, 151(1-4), 275-296, 1999.
Bowman, J. R., & Ando, M. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal International, 88(1), 25-41, 1987.
Briais, A., Patriat, P., & Tapponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299-6328, 1993.
Buttles, J., & Olson, P. A laboratory model of subduction zone anisotropy. Earth and Planetary Science Letters, 164(1-2), 245-262, 1998.
Cameselle, A. L., Ranero, C. R., Franke, D., & Barckhausen, U. The continent?ocean transition on the northwestern South China Sea. Basin Research, 29(S1), 73-95, 2017.
Canto, A., Padrones, J., Concepcion, R., Perez, A., Tamayo Jr, R., Dimalanta, C., . . . Yumul Jr, G. Geology of northwestern Mindoro and its offshore islands: Implications for terrane accretion in west Central Philippines. Journal of Asian Earth Sciences, 61, 78-87, 2012.
Chen, P.-F., Olavere, E. A., Wang, C.-W., Bautista, B. C., Solidum Jr, R. U., & Liang, W.-T. Seismotectonics of Mindoro, Philippines. Tectonophysics, 640, 70-79, 2015.
Chevrot, S. Multichannel analysis of shear wave splitting. Journal of Geophysical Research: Solid Earth, 105(B9), 21579-21590, 2000.
Christensen, N. I. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophysical Journal International, 76(1), 89-111, 1984.
Crampin, S. Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophysical Journal International, 53(3), 467-496, 1978.
Crampin, S. Evaluation of anisotropy by shear-wave splitting. Geophysics, 50(1), 142-152, 1985.
Crampin, S. The fracture criticality of crustal rocks. Geophysical Journal International, 118(2), 428-438, 1994.
Crampin, S. Calculable fluid–rock interactions. Journal of the Geological Society, 156(3), 501-514, 1999.
Crampin, S., & Peacock, S. A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Wave Motion, 45(6), 675-722, 2008.
DeMets, C., Gordon, R. G., & Argus, D. F. Geologically current plate motions. Geophysical Journal International, 181(1), 1-80, 2010.
Dimalanta, C., & Yumul, G. Magmatic and amagmatic contributions to crustal growth of an island-arc system: The Philippine example. International Geology Review, 45(10), 922-935, 2003.
Ding, W., Li, J., Clift, P. D., & Expedition, I. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: constraints from multi-channel seismic data and IODP Expedition 349. Journal of Asian Earth Sciences, 115, 97-113, 2016.
Faccenda, M., Burlini, L., Gerya, T. V., & Mainprice, D. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455(7216), 1097, 2008.
Fan, J., Zhao, D., Dong, D., & Zhang, G. P-wave tomography of subduction zones around the central Philippines and its geodynamic implications. Journal of Asian Earth Sciences, 146, 76-89, 2017.
Flower, M., Tamaki, K., & Hoang, N. Mantle extrusion: A model for dispersed volcanism and Dupal?like asthenosphere in East Asia and the Western Pacific: Wiley Online Library, 1998.
Forsyth, D. W. The early structural evolution and anisotropy of the oceanic upper mantle. Geophysical Journal International, 43(1), 103-162, 1975.
Fukao, Y. Evidence from core-reflected shear waves for anisotropy in the Earth′s mantle. Nature, 309(5970), 695, 1984.
Hacker, B., Mosenfelder, J., & Gnos, E. Rapid emplacement of the Oman ophiolite: Thermal and geochronologic constraints. Tectonics, 15(6), 1230-1247, 1996.
Hall, R. Reconstructing Cenozoic SE Asia. Geological Society, London, Special Publications, 106(1), 153-184, 1996.
Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), 353-431, 2002.
Hashimoto, W., & Sato, T. Contribution to the geology of Mindoro and neighboring islands, the Philippines. Geology and Paleontology of Southeast Asia, 5, 192-210, 1968.
Heuret, A., & Lallemand, S. Plate motions, slab dynamics and back-arc deformation. Physics of the Earth and Planetary Interiors, 149(1-2), 31-51, 2005.
Hilde, T. W., Uyeda, S., & Kroenke, L. Evolution of the western Pacific and its margin. Tectonophysics, 38(1-2), 145-165, 1977.
Holloway, N. North Palawan block, Philippines--Its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 66(9), 1355-1383, 1982.
Hsu, S.-K., Yeh, Y.-c., Doo, W.-B., & Tsai, C.-H. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 25(1-2), 29-44, 2004.
Huang, B. S., Huang, W. G., Liang, W. T., Rau, R. J., & Hirata, N. Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations. Geophysical research letters, 33(24), 2006.
Jiang, L., Zhan, W., Sun, J., & Li, J. Dynamic effects of plate-buoyancy subduction at Manila Trench, South China Sea. Paper presented at the AGU Fall Meeting Abstract, 2015.
Jumawan, F. Using geochemistry as a tool in determining the tectonic setting and mineralization potential of an exposed upper mantle-crust sequence: Example from the Amnay Ophiolitic Complex in Occidental Mindoro, Philippines. Journal of the Geological Society of the Philippines, 53, 24-48, 1998.
Karig, D., Sarewitz, D., & Haeck, G. Role of strike-slip faulting in the evolution of allochthonous terranes in the Philippines. Geology, 14(10), 852-855, 1986.
Karig, D. E. (1983). Accreted terranes in the northern part of the Philippine archipelago. Tectonics, 2(2), 211-236, 1983.
Keep, M. Models of lithospheric-scale deformation during plate collision: effects of indentor shape and lithospheric thickness. Tectonophysics, 326(3-4), 203-216, 2000.
Kind, R., Kosarev, G., Makeyeva, L., & Vinnik, L. Observations of laterally inhomogeneous anisotropy in the continental lithosphere. Nature, 318(6044), 358, 1985.
Kumazawa, M., & Anderson, O. L. Elastic moduli, pressure derivatives, and temperature derivatives of single?crystal olivine and single?crystal forsterite. Journal of Geophysical Research, 74(25), 5961-5972, 1969.
Kuo, B. Y., Chen, C. C., & Shin, T. C. Split S waveforms observed in northern Taiwan: implications for crustal anisotropy. Geophysical research letters, 21(14), 1491-1494, 1994.
Kuo, B. Y., Lin, S. C., & Lin, Y. W. SKS splitting and the scale of vertical coherence of the Taiwan mountain belt. Journal of Geophysical Research: Solid Earth, 2018.
Kuo?Chen, H., Wu, F. T., Okaya, D., Huang, B. S., & Liang, W. T. SKS/SKKS splitting and Taiwan orogeny. Geophysical research letters, 36(12), 2009.
Levin, V., Menke, W., & Park, J. Shear wave splitting in the Appalachians and the Urals: a case for multilayered anisotropy. Journal of Geophysical Research: Solid Earth, 104(B8), 17975-17993, 1999.
Li, C., & Song, T. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin. Chinese Science Bulletin, 57(24), 3165-3181, 2012.
Li, C.-F., Wang, P., Franke, D., Lin, J., & Tian, J. Unlocking the opening processes of the South China Sea. Scientific Drilling, 14, 55-59, 2012.
Li, C. F., Li, J., Ding, W., Franke, D., Yao, Y., Shi, H., . . . Kulhanek, D. K. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 120(3), 1377-1399, 2015.
Lin, J.-Y., & Lo, C.-L. Earthquake-induced crustal gravitational potential energy change in the Philippine area. Journal of Asian Earth Sciences, 66, 215-223, 2013.
Long, M. D., & Silver, P. G. The subduction zone flow field from seismic anisotropy: A global view. science, 319(5861), 315-318, 2008.
Long, M. D., & Silver, P. G. Mantle flow in subduction systems: The subslab flow field and implications for mantle dynamics. Journal of Geophysical Research: Solid Earth, 114(B10), 2009.
Michell, A. Ophiolite detachment and emplacement related to spreading ridge subduction. Ofioliti, 10, 355-362, 1985.
Montagner, J. P., & Tanimoto, T. Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. Journal of Geophysical Research: Solid Earth, 95(B4), 4797-4819, 1990.
Monteiller, V., & Chevrot, S. How to make robust splitting measurements for single-station analysis and three-dimensional imaging of seismic anisotropy. Geophysical Journal International, 182(1), 311-328, 2010.
Nataf, H. C., Nakanishi, I., & Anderson, D. L. Anisotropy and shear?velocity heterogeneities in the upper mantle. Geophysical research letters, 11(2), 109-112, 1984.
Nicolas, A., & Christensen, N. I. Formation of anisotropy in upper mantle peridotites?A review. Composition, structure and dynamics of the lithosphere?asthenosphere system, 16, 111-123, 1987.
Nishimura, C. E., & Forsyth, D. W. The anisotropic structure of the upper mantle in the Pacific. Geophysical Journal International, 96(2), 203-229, 1989.
Plomerova, J., ?ileny, J., & Babu?ka, V. Joint interpretation of upper-mantle anisotropy based on teleseismic P-travel time delays and inversion of shear-wave splitting parameters. Physics of the Earth and Planetary Interiors, 95(3-4), 293-309, 1996.
Raitt, R., Shor, G., Francis, T., & Morris, G. Anisotropy of the Pacific upper mantle. Journal of Geophysical Research, 74(12), 3095-3109, 1969.
Rangin, C., Jolivet, L., & Pubellier, M. A simple model for the tectonic evolution of southeast Asia and Indonesia region for the past 43 my. Bulletin de la Societe geologique de France, 6(6), 889-905, 1990.
Rangin, C., Stephan, J., & Muller, C. Middle Oligocene oceanic crust of South China Sea jammed into Mindoro collision zone (Philippines). Geology, 13(6), 425-428, 1985.
Rau, R.-J., Liang, W.-T., Kao, H., & Huang, B.-S. Shear wave anisotropy beneath the Taiwan orogen. Earth and Planetary Science Letters, 177(3-4), 177-192, 2000.
Roeser, H. A., & Bargeloh, H.-O. Reduction of geomagnetic measurements at sea in the vicinity of the geomagnetic equator. Deutsche Hydrografische Zeitschrift, 41(3-6), 237-255, 1988.
Savage, M., Silver, P., & Meyer, R. Observations of teleseismic shear?wave splitting in the Basin and Range from portable and permanent stations. Geophysical research letters, 17(1), 21-24, 1990.
Savage, M. K., & Silver, P. G. Mantle deformation and tectonics: constraints from seismic anisotropy in the western United States. Physics of the Earth and Planetary Interiors, 78(3-4), 207-227, 1993.
Shearer, P., & Orcutt, J. Compressional and shear wave anisotropy in the oceanic lithosphere-the Ngendei seismic refraction experiment. Geophysical Journal International, 87(3), 967-1003, 1986.
Shih, X. R., Meyer, R. P., & Schneider, J. F. An automated, analytical method to determine shear-wave splitting. Tectonophysics, 165(1-4), 271-278, 1989.
Sibuet, J.-C., Yeh, Y.-C., & Lee, C.-S. Geodynamics of the South China Sea. Tectonophysics, 692, 98-119, 2016.
Silver, P. G. Seismic anisotropy beneath the continents: Probing the depths of geology. Annual review of earth and planetary sciences, 24(1), 385-432, 1996.
Silver, P. G., & Chan, W. W. Implications for continental structure and evolution from seismic anisotropy. Nature, 335(6185), 34, 1988.
Silver, P. G., & Chan, W. W. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96(B10), 16429-16454, 1991.
Stephan, J. F., Blanchet, R., Rangin, C., Pelletier, B., Letouzey, J., & Muller, C. Geodynamic evolution of the Taiwan-Luzon-Mindoro belt since the late Eocene. Tectonophysics, 125(1-3), 245-268, 1986.
Tanimoto, T., & Anderson, D. L. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s. Journal of Geophysical Research: Solid Earth, 90(B2), 1842-1858, 1985.
Tapponnier, P., Peltzer, G., Le Dain, A., Armijo, R., & Cobbold, P. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10(12), 611-616, 1982.
Taylor, B., & Hayes, D. E. Origin and history of the South China Sea basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, 23-56, 1983.
Vecsey, L., Plomerova, J., & Babu?ka, V. Shear-wave splitting measurements—Problems and solutions. Tectonophysics, 462(1-4), 178-196, 2008.
Vinnik, L. P., Farra, V., & Romanowicz, B. Azimuthal anisotropy in the Earth from observations of SKS at Geoscope and NARS broadband stations. Bulletin of the Seismological Society of America, 79(5), 1542-1558, 1989.
Wuestefeld, A., Al?Harrasi, O., Verdon, J. P., Wookey, J., & Kendall, J. M. A strategy for automated analysis of passive microseismic data to image seismic anisotropy and fracture characteristics. Geophysical Prospecting, 58(5), 755-773, 2010.
Wustefeld, A., Bokelmann, G., Zaroli, C., & Barruol, G. SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5), 515-528, 2008.
Yeh, Y. C., Sibuet, J. C., Hsu, S. K., & Liu, C. S. Tectonic evolution of the Northeastern South China Sea from seismic interpretation. Journal of Geophysical Research: Solid Earth, 115(B6), 2010.
Yeh, Y.-L., Kao, H., Wen, S., Chang, W.-Y., & Chen, C.-H. Surface wave tomography and azimuthal anisotropy of the Philippine Sea Plate. Tectonophysics, 592, 94-112, 2013.
Yumul, G. P., Dimalanta, C. B., Tamayo, R. A., & Maury, R. C. Collision, subduction and accretion events in the Philippines: a synthesis. Island Arc, 12(2), 77-91, 2003.
Yumul Jr, G. P., Dimalanta, C. B., Marquez, E. J., & Queano, K. L. Onland signatures of the Palawan microcontinental block and Philippine mobile belt collision and crustal growth process: a review. Journal of Asian Earth Sciences, 34(5), 610-623, 2009.
指導教授 陳伯飛(Po-Fei Chen) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明