博碩士論文 105329004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.149.229.120
姓名 林鄭安(Cheng-An Ling)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 碳支撐鉑金錫奈米棒應用於乙醇氧化反應之研究
(The Ethanol Oxidation Reaction Performance of Carbon-Supported PtAuSn Nanorods)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,由於乙醇可由生質能源包含發酵反應產生,而使直接乙醇燃料電池(direct ethanol fuel cell, DEFC)的收到廣泛注意。然而,由於COad和CHxad等中間產物會吸附在白金觸媒表面使得反應速率下降,使得乙醇氧化反應(ethanol oxidation reaction, EOR)效能不佳,。為了要增益白金觸媒之EOR活性,本研究透過甲酸還原法(formic acid method, FAM)製備具有不同程度親氧性之碳支撐鉑基二元與三元包含鉑金、鉑錫、鉑鈀錫和鉑金錫奈米棒(nanorods, NRs)。所製備觸媒之結構、表面組成、化學組成、形貌和電化學性質分析可藉由X光繞射儀(X-ray diffraction, XRD),光電子能譜儀(X-ray photoelectron spectroscopy, XPS),感應耦合電漿原子發射光譜分析儀(inductively coupled plasma-atomic emission spectrometer, ICP-OES),高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM),電化學量測系統等儀器鑑定。
研究結果分為兩個部分,第一部分以FAM製備碳支撐鉑金、鉑錫二元和鉑鈀錫和鉑金錫三元奈米棒。經過電化學量測後,EOR的活性和耐久度測試結果相同,優劣如下: PtAuSn20 > PtPdSn > PtSn > PtAu。PtAuSn20在添加第三元素後,不但具有較高的親氧性,能夠增強Pt表面乙醇的解離吸附反應,而且通過電子修飾效應和雙功能機制具有較佳的協同效應。此外,PtAuSn20也因具有鉑核/ 金次層/ 錫殼結構而有著絕佳的穩定度。
在第二部分中,製備出不同鉑/金/錫(70/5/25、70/10/20和70/20/10)組成的三元合金觸媒並命名為PtAuSn25、PtAuSn20與PtAuSn10,利用XPS,可以得到表面金/錫比例,依序為1/4、1/2和1/5,金會導致表面鉑原子產生拉伸應變,PtAuSn20因有著較多的表面金比例而擁有較佳的EOR活性。在穩定度方面,則是和表面錫與二氧化錫含量相同,依序為PtAuSn25 (50%錫) > PtAuSn10 (43%錫)> PtAuSn20??(38%錫)。
根據以上研究顯示,可以利用控制金/錫比例來有效提升三元鉑金錫奈米棒觸媒之EOR性能。
摘要(英) Direct ethanol fuel cells (DEFCs) have been attracted much attention recently because ethanol can be produced from biomass through various methods including fermentations. However, owing to poisoning by adsorbed intermediates such as COad and CHxad, the electro-oxidation of ethanol is sluggish. In order to enhance the ethanol oxidation reaction (EOR) performance, carbon-supported Pt-based nanorods (NRs) catalysts, including PtAu, PtSn, PtPdSn and PtAuSn have been prepared via formic acid method (FAM). The lattice structures, surface compositions, chemical compositions, morphologies and electrochemical properties of prepared catalysts are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometer (ICP-OES), high resolution transmission electron microscopy (HRTEM), and electrochemical measurements, respectively.
This study is divided into two parts. In the first part, carbon-supported Pt-based binary and ternary NRs are prepared and their activity and durability performance have the same order PtAuSn20 > PtPdSn > PtSn > PtAu. With the third elements addition, PtAuSn20 NRs not only have the high oxophilicity that can activate the dissociative adsorption of ethanol on Pt surface, but also have synergies effect through electronic modification effect and bi-functional mechanism. Besides, PtAuSn20 with the Pt core/Au sublayer/Sn shell structure has the best stability.
In the second part, the effect of compositions on the EOR performance of PtAuSn NRs has been investigated. PtAuSn NRs with Pt/Au/Sn ratios of 70/5/25, 70/10/20 and 70/20/10 have been prepared (named as PtAuSn25, PtAuSn20 and PtAuSn10, respectively). According to XPS results, Au/Sn ratios of PtAuSn25, PtAuSn20 and PtAuSn10 are closed to 1/4, 1/2 and 1/5, respectively. The EOR activity of PtAuSn20 with the largest Au/Sn ratios is the highest, which can be contributed to the tensile strain provided by Au. Otherwise, CA tests have the same order of Sn and SnO2 contents, which is PtAuSn25 (50%) > PtAuSn10 (43%) > PtAuSn20 (38%). Based on the above results, we have demonstrated that by tuning the Sn and Au ratio, the EOR performance can be promoted effectively.
關鍵字(中) ★ 鉑/金/錫
★ 乙醇氧化反應
★ 奈米棒
★ 雙功能機制
★ 穩定度
關鍵字(英) ★ PtAuSn
★ ethanol oxidation reaction
★ nanorods
★ bi-functional mechanism
★ stability
論文目次 摘要...............................................................................................i
Abstract....................................................................................................iii
致謝............................................................................................................v
Table of Comtents...................................................................................vii
List of Figures...........................................................................................ix
List of Tables...........................................................................................xii
Chapter 1 Introduction............................................................................1
1.1 Mechanism of EOR of Pt catalysts in acidic solution..................2
1.2 Pt-based catalysts..........................................................................5
1.3 The structural effect of catalysts on EOR.....................................8
1.4 Motivation and approach.............................................................11
Chapter 2 Experimental Section...........................................................12
2.1 Preparation of Catalysts..............................................................12
2.1.1 Preparation of carbon-supported PtAu and PtSn NRs..........12
2.1.2 Preparation of carbon-supported PtAuSn and PtPdSn NRs..12
2.2 Characterization of Catalysts......................................................16
2.2.1 Inductively coupled plasma – optical emission spectroscopy
(ICP-OES)............................................................................16
2.2.2 X-ray photoelectron spectroscopy (XPS).............................16
2.2.3 X-ray diffraction (XRD).......................................................16
2.2.4 High resolution transmission electron microscopy (HRTEM)
..............................................................................................18
2.2.5 Electrochemical measurements...........................................18
Chapter 3 Results and Discussion.........................................................20
3.1 The structural and electrochemical characterizations of carbon-
supported PtAu, PtSn, PtAuSn20 and PtPdSn NRs...................20
3.1.1 ICP and HRTEM characterizations.....................................20
3.1.2 XRD characterization..........................................................20
3.1.3 XPS characterization...........................................................23
3.1.4 CV characterization.............................................................23
3.1.5 LSV and CA characterizations.............................................28
3.1.6 Summary..............................................................................30
3.2 The structural and electrochemical characterizations of carbon-
supported PtAuSn NRs with different compositions..................33
3.2.1 ICP and HRTEM characterizations.....................................33
3.2.2 XRD characterization..........................................................33
3.2.3 XPS characterization...........................................................33
3.2.4 CV characterization.............................................................36
3.2.5 LSV and CA characterizations............................................41
3.2.6 Summary..............................................................................44
Chapter 4 Conclusions...........................................................................45
References................................................................................................46
參考文獻 [1] E. Antolini and E.R. Gonzalez, J. Power Sources 195 (2010) 3431–3450.
[2] M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar and W. R. W. Daud, Int. J. Hydrogen Energy 38 (2013) 9438–9453.
[3] L. X. Yao and Y. H. Chang, Energy Policy 77 (2015) 131–139.
[4] M. Li, A. Kowal, K. Sasaki, N. Marinkovic, D. Su, E. Korach, P. Liu and R.R. Adzic, Electrochim. Acta 55 (2010) 4331–4338.
[5] U. B. Demirci, J. Power Sources 173 (2007) 11–18.
[6] J. Xuan, M.K. Leung, D.Y. Leung and M. Ni, Renew. Sust. Energ. Rev. 13 (2009) 1301–1313.
[7] J. H. Wee, Renew. Sust. Energ. Rev. 11 (2007) 1720–1738.
[8] E. Antolini, J. Power Sources 170 (2007) 1–12.
[9] L. Rao, Y. Jiang, B. Zhang, L. You, Z. Li and S. Sun, Prog. Chem. 26 (2014) 727–736.
[10] R. Gokulakrishnan, A. S. Perumal and N. Manoharan, Indian. J. Sci. Technol.7 (2014) 41-44.
[11] S. Rousseau, C. Coutanceau, C. Lamy and J. M. Leger, J. Power Sources 158 (2006) 18-24.
[12] S. Abdullah, S. K. Kamarudin, U. A. Hasran, M. S. Masdar and W. R. W. Daud, J. Power Sources 262 (2014) 401-406.
[13] H. F. Wang and Z. P. Liu, J. Phys. Chem. C 111 (2007) 12157-12160.
[14] M. Li, D. A. Cullen, K. Sasaki, N. S. Marinkovic, K. More and R. R. Adzic, J. Am. Chem. Soc. 135 (2013) 132–141.
[15] Z. X. Liang, T. S. Zhao, J. B. Xu and L. D. Zhu, Electrochim. Acta 54 (2009) 2203–2208.
[16] C. Buso-Rogero, E. Herrero and J. M. Feliu, ChemPhysChem 15 (2014) 2019–2028.
[17] W. J. Zhou, M. Li, L. Zhang and S. H. Chan, Electrochim. Acta 123 (2014) 233–239.
[18] C. Lamy, E. Belgsir and J. Leger, J. Appl. Electrochem. 31 (2001) 799–809.
[19] G. A. Camara and T. Iwasita, J. Electroanal. Chem. 578 (2005) 315–321.
[20] P. A. Christensen, S. W. Jones and A. Hamnett, Phys. Chem. Chem. Phys. 15 (2013) 17268–17276.
[21] M. H. Shao and R. R. Adzic, Electrochim. Acta 50 (2005) 2415–2422.
[22] H. A. Asiri and A. B. Anderson, J. Electrochem. Soc. 162 (2015), 115–122.
[23] S. C. S. Lai, S. E. F. Kleijn, F. T. Z. Ozturk, V. C. V. Vellinga, J. Koning, P. Rodriguez and M. T. M. Koper, Catal. Today 154 (2010) 92–104.
[24] S. C. Chang, L. W. H. Leung and M. J. J. Weaver, Phys. Chem. 94 (1990) 6013–6021.
[25] F. Vigier, C. Coutanceau, F. Hahn, E. Belgsir and C. Lamy, J. Electroanal. Chem. 563 (2004) 81–89.
[26] J. Rasko, M. Domok, K. Baan and A. Erd?helyi, Appl. Catal. A 299 (2006) 202–211.
[27] Y. Y. Yang, J. Ren, Q. X. Li, Z. Y. Zhou, S. G. Sun and W. B. Cai, ACS Catal. 4 (2014) 798–803.
[28] H. F. Wang and Z. P. Liu, J. Am. Chem. Soc. 130 (2008) 10996–11004.
[29] W. Zhu, J. Ke, S. B. Wang, J. Ren, H. H. Wang, Z. Y. Zhou, R. Si, Y. W. Zhang and C. H. Yan, ACS Catal. 5 (2015) 1995–2008.
[30] L. Colmenares, H. Wang, Z. Jusys, L. Jiang, S. Yan, G. Q. Sun and R. J. Behm, Electrochim. Acta 52 (2006) 221–233.
[31] H. Wang, Z. Jusys and R. Behm, J. Power Sources 154 (2006) 351–359.
[32] W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides and P. Tsiakaras, J. Power Sources 140 (2005) 50–58.
[33] J. Tayal, B. Rawat and S. Basu, Int. J. Hydrogen Energy 37 (2012) 4597–4605.
[34] M. Li, P. Liu and R. R. Adzic, J. Phys. Chem. Lett. 3 (2012) 3480?3485.
[35] F. L. Cheng, X. C. Dai, H. Wang, S. P. Jiang, M. Zhang and C. W. Xu, Electrochim. Acta 55 (2010) 2295–2298.
[36] S. Mourdikoudis, M. Chirea, D. Zanaga, T. Altantzis, M. Mitrakas, S. Bals, L. M. Liz-Marzan, J. Perez-Juste and I. Pastoriza-Santos, Nanoscale 7 (2015) 8739–8747.
[37] J. M. Jacob, P. G. Corradini, E. Antolini, N. A. Santos and J. Perez, Appl. Catal. B 165 (2015) 176–184.
[38] J. Datta, A. Dutta and S. Mukherjee, J. Phys. Chem. C 115 (2011) 15324–15334.
[39] X. Yang, Q. Yang, J. Xu and C. S. Lee, J. Mater. Chem. 22 (2012) 8057–8062.
[40] M. Li, A. Kowal, K. Sasaki, N. Marinkovic, D. Su, E. Korach, P. Liu and R. R. Adzic, Electrochim. Acta 55 (2010) 4331–4338.
[41] A. Kowal, M. Li, M. Shao, K. Sasaki, M. Vukmirovic, J. Zhang, N. Marinkovic, P. Liu, A. Frenkel and R. Adzic, Nat. Mater. 8 (2009) 325–330.
[42] C. W. Xu, P. K. Shen, X. H. Ji, R. Zeng and Y. L. Liu, Electrochem. Commun. 7 (2005) 1305-1308.
[43] Y. C. Wei, C. W. Liu, W. D. Kang, C. M. Lai, L. D. Tsai and K. W. Wang, J. Electroanal. Chem. 660 (2011) 64-70.
[44] T. Sheng, W. F. Lin, C. Hardacre and P. Hu, Phys. Chem. Chem. Phys. 16 (2014) 13248–13254.
[45] M. Li, P. Liu and R. R. Adzic, J. Phys. Chem. Lett. 3 (2012) 3480–3485.
[46] A. B. Delpeuch, F. Maillard, M. Chatenet, P. Soudant and C. Cremers, Appl. Catal., B 181 (2016) 672–680.
[47] J. Perez, V. A. Paganin and E. Antolini, J. Electroanal. Chem 654 (2011) 108–115.
[48] W. P. Zhou, M. Li, C. Koenigsmann, C. Ma, S. S. Wong and R. R. Adzic, Electrochim. Acta 56 (2011) 9824–9830.
[49] S. Wang, S. P. Jiang, X. Wang and J. Guo, Electrochim. Acta 56 (2011) 1563–1569.
[50] E. Mendez, J. L. Rodriguez, M. C. Arevalo, and E. Pastor, Langmuir 18 (2002)763–772.
[51] A. B. Delpeuch, F. Maillard, M. Chatenet, P. Soudant and C. Cremers, Appl. Catal. B 181 (2016) 672–680.
[52] T. S. Almeida, A. R. van Wassen, R. B. van Dover, A. R. de Andrade and H. D. Abruna, J. Power Sources 284 (2015) 623–630.
[53] Y. Z. Guo, S. Y. Yan, C. W. Liu, T. F. Chou, J. H. Wang and K. W. Wang, J. Mater. Chem. A 5 (2017) 14355–14364.
[54] S. Cherevko, X. L. Xing and C. H. Chung, Electrochim. Acta 56 (2011) 5771–5775.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2018-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明