博碩士論文 105329601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.149.25.73
姓名 弗達斯(Rahmandhika Firdauzha Hary Hernandha)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 碳披覆於矽負極材料增益其電化學充放鋰離子特性
(Carbon-coated Silicon Anodes for Improving Lithiation-Delithiation Properties)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去的半個世紀以來,對於高功率和高效能量儲存裝置的需求日益增加。矽由於其優異的特性而被視為相當有潛力的鋰電池負極材料,例如低工作電壓,高理論比容量,低成本和大量地球。 不幸的是,矽負極在鋰化過程中嚴重地體積膨脹,這對容量衰減和循環性能影響很大。 因此,為了控制矽的體積膨脹,在矽表面上進行碳披覆及粒徑優化被認為是有潛力的方法。
在碳披覆的過程中,利用矽粉與葡萄糖/煤不同比例混合,並在熱處理後分別達到碳含量10 wt%,20 wt%,和30 wt% (煤焦油40 wt%)。 葡萄糖作為碳源似乎比煤焦油具有更好的性能。 此外,我們在最佳碳塗層含量20 wt% (GL20樣品) 獲得最佳循環性能。 並在GL20樣品中顯示出最高的首次充電容量為2689.8 mAh/g,並且高速保留率為31.4%,甚至在200次循環後仍具有1278.4 mAh/g。 此外,我們研究了粒徑對於碳披覆矽影響。 我們發現在20 wt%碳塗層中有最小粒徑 (~100 nm) 的樣品 (SC100) 顯示出比較大粒徑尺寸的 (>400nm) 有更佳的首次充電容量 (2808.1 mAh/g) 的驚人表現和以及200次循環後仍能達到1751.5 mAh/g。 此外,添加石墨形成複合材料將會是一個較佳的手法來增益高速維持率及循環壽命。 最後一小節的研究結果證實添加 45-60 wt% KS6的石墨比起添加30 wt% 石墨時在高速維持率多了更高 增益,並且在100圈後依舊可以保持55% 的第一圈電容值。
摘要(英) Demand for high power and efficiency energy storage in this past half-century is tremendous high. Silicon, as a promising anode material for LIBs, has a various benefit, such as low working voltage, high theoretical specific capacity, low-cost, and earth abundance. Unfortunately, silicon anode has a big challenge in serious volume expansion during lithiation process, which affected in capacity fading and poor cycle performance. Thus, in order to control volume expansion in silicon, carbon coating and silicon particle size optimizing method lead to be promising ways.
During carbon coating process, the silicon powder mixed with glucose/coal tar at different ratios to reach 10 wt%, 20 wt%, and 30 wt% (40 wt% for coal tar) carbon contents after heat-treatment, respectively. It seems that glucose as a precursor has a better performance than coal tar. Furthermore, we got the best cycle performance at the optimum carbon content at 20 wt% (GL20 sample). GL20 sample shows high first charge capacity 2689.8 mAh/g with 31.4% in high rate retention and even after 200 cycles still stand in 1278.4 mAh/g. In addition, we investigated the particle size effect in carbon-coated silicon. Expectedly, we found that the smallest particle size (~100nm) with 20 wt% carbon coated silicon (SC100 sample) shown a breathtaking results with higher first cycle charge capacity (2838.1 mAh/g) than larger size of particle size (>400 nm) and it still can stand for 1751.5 mAh/g after 200 cycles. Moreover, additional KS6 graphite as a composite can be a good choice in increasing high rate retention and cycle performance. Based on the latest experiments of this study, it has proven that the addition of 45-60 wt% KS6 graphite can increase the high rate retention, and after 100 cycles the capacity still stand for more than 55% from its first charge capacity.
關鍵字(中) ★ 鋰
★ 電池
★ 矽
★ 高能量
★ 碳塗層
★ 葡萄糖
★ 焦油
★ 穩定性高
關鍵字(英) ★ lithium
★ battery
★ silicon
★ high energy
★ carbon coating
★ glucose
★ coal tar
★ high stability
論文目次 INSIDE COVER PAGE i
THE POWER OF ATTORNEY OF MASTER′S THESIS IN ELECTRONIC FILE ii
THESIS POSTPONEMENT OF PUBLICATION REQUEST FORM iii
ADVISOR′S RECOMMENDATION LETTER iv
VERIFICATION LETTER FROM THE ORAL EXAMINATION COMMITTEE v
ABSTRACT (CHINESE) vi
ABSTRACT (ENGLISH) vii
ACKNOWLEDGEMENT viii
LIST OF CONTENTS ix
LIST OF FIGURES xii
LIST OF TABLES xiv
CHAPTER 1 INTRODUCTION 1
1.1 Lithium-Ion Batteries (LIBs) System 1
1.2 Motivation for Research 2
1.3 Research Goal 3
1.4 Thesis Outline 3
CHAPTER 2 LITERATURE REVIEWS 4
2.1 Basic Concept in LIBs as Rechargeable Battery System 4
2.2 Silicon as Anode Material 5
2.2.1 Determine the Theoretical Capacity 5
2.2.2 Silicon Anode Primary Problem 8
2.3 Role of FEC as an Additive in Silicon Anode System 9
2.4 Carbon-coated Silicon (State of the Art) 10
CHAPTER 3 EXPERIMENTAL 12
3.1 Materials 12
3.2 Carbon-coated Silicon Anode Synthesis 12
3.3 Electrolyte Preparation 13
3.4 Pre-Assembly 13
3.4.1 Slurry Making 13
3.4.2 Electrode Coating 14
3.4.3 Electrode Punching and Drying 14
3.5 Coin Cell Assembly 14
3.6 Materials Characterization and Electrochemical Testing 14
3.6.1 Dynamic Light Scattering (DLS) 14
3.6.2 X-Ray Diffractometer (XRD) 15
3.6.3 Raman Spectroscopy Analysis 15
3.6.4 Thermo-Gravimetric Analyzer (TGA) 15
3.6.5 Scanning Electron Microscope/Energy Dispersive X-Ray (SEM/EDX) 15
3.6.6 Electrochemical Performance Test 16
3.7 Research Flowcharts and Scheme 17
CHAPTER 4 RESULTS AND DISCUSSIONS 23
4.1 Pure Silicon Material 23
4.1.1 Particle Size Result 23
4.1.2 Basic Compound 24
4.1.3 Powder Morphology 25
4.1.4 Electrochemical Performance of Pure Silicon 26
4.2 Particle Size and Carbon Content Result for Different Carbon Precursors 30
4.2.1 Particle Size Result 30
4.2.2 XRD Test Result 31
4.2.3 Raman Test Result 31
4.2.4 EDX Test Result 32
4.2.5 TGA Test Result 33
4.3 Morphology of Carbon-coated Silicon Powder in Different Carbon Precursors 35
4.4 Electrochemical Performance for Different Carbon Precursor Samples 37
4.5 Particle Size and Carbon Content in Glucose Precursor’s
Various Particle Size Sample 44
4.5.1 Particle Size Result 44
4.5.2 XRD Test Result 44
4.5.3 Raman Test Result 45
4.5.4 EDX Test Result 46
4.5.5 TGA Test Result 47
4.6 Morphological Comparison between SC100, SC400, and SC600 sample 48
4.7 Electrochemical Performance for Carbon-coated Silicon by Glucose Precursor method with Different Particle Size 50
4.8 Particle Size and Carbon Content in Carbon-coated Silicon/Graphite Composite 55
4.8.1 Particle Size Result 55
4.8.2 XRD Test Result 56
4.8.3 Raman Test Result 57
4.8.4 EDX Test Result 57
4.8.5 Carbon Calculating Result 58
4.9 Morphological Comparison between SCG03, SCG05, and SCG07 sample 58
4.10 Electrochemical Performance for SCG samples 60
CHAPTER 5 CONCLUSIONS 65
CHAPTER 6 FUTURE WORKS 66
REFERENCES 67
參考文獻 [1] J. Li, E. Murphy, J. Winnick and P. A. Kohl, "Studies on the Cycle Life of Commercial Lithium Ion Batteries during Rapid Charge–Discharge Cycling," Journal of Power Sources, vol. 102, p. 294–301, 2001.
[2] R. J. Gummow, A. d. Kock and M. M. Thackeray, "Improved Capacity Retention in Rechargeable 4V Lithium/Lithium-Manganese Oxide (Spinel) Cells," Solid State Ionics, vol. 69, pp. 59-67, 1994.
[3] C. Curry, "Lithium-ion Battery Costs and Market, Squeezed Margins Seek Technology Improvements and New Business Models," Bloomberg New Energy Finance, New York, 2017.
[4] Y. Wu, Lithium-Ion Batteries Fundamentals and Applications, Florida, USA: CRC Press (Taylor & Francis Group), 2015.
[5] A. Midilli, I. Dincer and M. Ay, "Green Energy Strategies for Sustainable Development," Energy Policy, vol. 34, no. 18, pp. 3623-3633, 2006.
[6] N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho and P. G. Bruce, "Challenges Facing Lithium Batteries and Electrical Double?Layer Capacitors," Angewandte Chemie International Edition, pp. 9994-10024, 2012.
[7] J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, vol. 414, pp. 359-367, 2001.
[8] X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon and J. Wu, "Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review," Advance Energy Materials, vol. 4, pp. 1-23, 2014.
[9] B. Koo, H. Kim, Y. Cho, K. T. Lee, N.-S. Choi and J. Cho, "A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries," Angewandte Chemie International Edition, vol. 51, p. 8762 –8767, 2012.
[10] S. Hill and M. C. Galan, "Fluorescent Carbon Dots from Mono- and Polysaccharides: Synthesis, Properties and Applications," Beilstein Journal of Organic Chemistry, vol. 13, p. 675–693, 2017.
[11] P. G. Stansberry, J. W. Zondlo and A. H. Stiller, "Coal-Derived Carbons," in Carbon Materials for Advanced Technologies, Oak Ridge, Tennessee (USA), Pergamon (An Imprint of Elsevier Science), 1999, p. 205–234.
[12] L. F. King and W. D. Robertson, "A Comparison of Coal Tar and Petroleum Pitches as Electrode Binders," Fuel, vol. 47, pp. 197-212, 1968.
[13] J. M. Hutcheon, "Manufacture Technology of Baked and Graphitized Carbon Bodies," in Modern Aspects of Graphite Technology, New York (USA), Academic Press, 1970, pp. 49-78.
[14] M. Yoshio, R. J. Brodd and A. Kozawa, Lithium-Ion Batteries Science and Technologies, New York, USA: Springer, 2009.
[15] W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li and J. Yang, "Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries," Advanced Energy Materials, vol. 1701083, pp. 1-28, 2017.
[16] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang and Y. Cui, "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes," Nano Letters, vol. 12, p. 3315?3321, 2012.
[17] J. Wang, J. Yang and S. Lu, "A Mini Review: Nanostructured Silicon-based Materials for Lithium Ion Battery," Nanoscience & Nanotechnology-Asia, vol. 6, pp. 3-27, 2016.
[18] M. Yoshio, R. J. Brodd and A. Kozawa, Lithium-Ion Batteries Science and Technologies, New York: Springer Science & Business Media, 2009.
[19] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang, "Size-Dependent Fracture of Silicon Nanoparticles During Lithiation," ACS Nano, vol. 6, no. 2, p. 1522–1531, 2012.
[20] B. A. Boukamp, G. C. Lesh and R. A. Huggin, "All-Solid Lithium Electrodes with Mixed-Conductor Matrix," Journal of Electrochemical Society, vol. 128, no. 4, pp. 725-729, 1981.
[21] A. Casimir, H. Zhang, O. Ogoke, J. C. Amine, J. Lu and G. Wu, "Silicon-based Anodes for Lithium-ion Batteries: Effectiveness of Materials Synthesis and Electrode Preparation," Nano Energy, vol. 27, p. 359–376, 2016.
[22] X. Zuo, J. Zhua, P. Muller-Buschbaumb and Y.-J. Cheng, "Silicon based Lithium-ion Battery Anodes: A Chronicle Perspective Review," Nano Energy, vol. 31, p. 113–143, 2017.
[23] M. Ge, J. Rong, X. Fang and C. Zhou, "Porous Doped Silicon Nanowires for Lithium ion Battery Anode with Long Cycle Life," Nano letters, vol. 12, pp. 2318-2323, 2012.
[24] M. Ashuri, Q. Hea and L. L. Shaw, "Silicon As a Potential Anode Material for Li-ion Batteries: Where Size, Geometry and Structure Matter," Nanoscale, vol. 8, p. 74–103, 2016.
[25] A. F. Gonzalez, N.-H. Yang and R.-S. Liu, "Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives," Journal of Physical Chemistry C, vol. 121, p. 27775?27787, 2017.
[26] Y. Cen, Q. Qin, R. D. Sisson and J. Liang, "Effect of Particle Size and Surface Treatment on Si/Graphene Nanocomposite Lithium-Ion Battery Anodes," Electrochimica Acta, vol. 251, pp. 690-698, 2017.
[27] H. Okamoto, "The Li-Si (Lithium-Silicon) System," Bulletin of Alloy Phase Diagrams, vol. 11, pp. 306-312, 1990.
[28] J. Cho, "Porous Si Anode Materials for lithium Rechargeable Batteries," Journal of Materials Chemistry (RSC), vol. 20, p. 4009–4014, 2010.
[29] U. Kasavajjula, C. Wang and A. J. Appleby, "Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-ion Secondary Cells," Journal of Power Sources, vol. 163, p. 1003–1039, 2007.
[30] M. B. Pinson and M. Z. Bazant, "Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction," Journal of The Electrochemical Society, vol. 160, no. 2, pp. A243-A250, 2013.
[31] N. Nitta, F. Wu, J. T. Lee and G. Yushin, "Li-ion Battery Materials: Present and Future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015.
[32] H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang and Y. Cui, "Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes," Nano Letters, vol. 12, no. 2, p. 904–909, 2012.
[33] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu and Y. Cui, "Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes Through Solid–Electrolyte Interphase Control," Nature Nanotechnology, vol. 7, no. 5, pp. 310-315, 2012.
[34] J. S. Bridel, T. Azais, M. Morcrette, J. M. Tarascon and D. Larcher, "Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries," Chemistry of Materials, vol. 22, no. 3, p. 1229–1241, 2010.
[35] H. Shobukawa, J. Alvarado, Y. Yang and Y. S. Meng, "Electrochemical Performance and Interfacial Investigation on Si Composite Anode for Lithium Ion Batteries in Full Cell," Journal of Power Sources, vol. 359, pp. 173-181, 2017.
[36] M.-H. Ryou, G.-B. Han, Y. M. Lee, J.-N. Lee, D. J. Lee, Y. O. Yoon and J.-K. Park, "Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells," Electrochimica Acta, vol. 55, no. 6, pp. 2073-2077, 2010.
[37] C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Bjorefors, K. Edstrom and T. Gustafsson, "Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive," Chemistry of Materials, vol. 27, p. 2591?2599, 2015.
[38] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu and Y. Cui, "Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes through Solid–Electrolyte Interphase Control," Nature Nanotechnology, vol. 7, pp. 310-315, 2012.
[39] R. Yuge, A. Toda, K. Fukatsu, N. Tamura, T. Manako, K. Nakahara and K. Nakano, "Effect of Volume Expansion on SEI Covering Carbon-Coated Nano-Si/SiO Composite," Journal of The Electrochemical Society, vol. 160, no. 10, pp. A1789-A1793, 2013.
[40] S. Chen, L. Shen, P. A. v. Aken, J. Maier and Y. Yu, "Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries," Advanced Materials, vol. 1605650, pp. 1-8, 2017.
[41] Y.-S. Hu, R. D. Cakan, M.-M. Titirici, J.-O. Muller, R. Schlogl, M. Antonietti and J. Maier, "Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries," Angewandte Chemie International Edition, vol. 47, p. 1645 –1649, 2008.
[42] X. Ma, Y. Liu, L. Kong, Y. Ding, J. Zhao and N. Xu, "Lithium-ion Battery Anode Electrochemical Properties of Si/C Composites Using Graphite and Glucose as Carbon Source," Advanced Materials Research, Vols. 347-353, pp. 3506-3509, 2012.
[43] R. Shaw, "ATA Scientific," 23 April 2013. [Online]. Available: http://149.171.168.221/partcat/wp-content/uploads/Malvern-Zetasizer-LS.pdf. [Accessed 26 June 2018].
[44] K. Kabezya and H. Motjotji, "The Effect of Ball Size Diameter on Milling Performance," Journal of Material Sciences & Engineering, vol. 4, no. 1, pp. 1-3, 2015.
[45] A. Fayyaz, N. Muhamad, A. B. Sulong, H. S. Yunn, S. Y. M. Amin and J. Rajabi, "Effect of Dry and Wet Ball Milling Process on Critical Powder Loading and Mixture Properties of Fine WC-10Co-0.8VC Powder," Jurnal Teknologi (Sciences & Engineering), vol. 59, p. 141–144, 2012.
[46] M.-G. Li, C.-J. Sun, S.-H. Gau and C.-J. Chuang, "Effects of Wet Ball Milling on Lead Stabilization and Particle Size Variation in Municipal Solid Waste Incinerator Fly Ash," Journal of Hazardous Materials, vol. 174, p. 586–591, 2010.
[47] R. R. Devarapalli, S. Szunerits, Y. Coffinier, M. V. Shelke and R. Boukherroub, "Glucose-Derived Porous Carbon-Coated Silicon Nanowires as Efficient Electrodes for Aqueous Micro-Supercapacitors," ACS Applied Materials Interfaces, vol. 8, pp. 4298-4302, 2016.
[48] D. Li, F. Tian, B. Chu, D. Duan, X. Sha, Y. Lv, H. Zhang, N. Lu, B. Liu and T. Cui, "Ab Initio Structure Determination of n-Diamond," Scientific Reports, vol. 5:13447, pp. 1-8, 2015.
[49] Y. Liu, A. Wiek, V. Dzhagan and R. Holzea, "Improved Electrochemical Behavior of Amorphous Carbon-Coated Copper/CNT Composites as Negative Electrode Material and Their Energy Storage Mechanism," Journal of The Electrochemical Society, vol. 163, no. 7, pp. A1247-A1253, 2016.
[50] Y.-J. Han, J. Kim, J.-S. Yeo, J. C. An, I.-P. Hong, K. Nakabayashi, J. Miyawaki, J.-D. Jung and S.-H. Yoon, "Coating of Graphite Anode with Coal Tar Pitch as an Effective Precursor for Enhancing the Rate Performance in Li-ion Batteries: Effects of Composition and Softening Points of Coal Tar Pitch," Carbon, vol. 94, p. 432–438, 2015.
[51] S. Chen, P. Bao, X. Huang, B. Sun and G. Wang, "Hierarchical 3D Mesoporous Silicon@Graphene Nanoarchitectures for Lithium Ion Batteries with Superior Performance," Nano Research, vol. 7, no. 1, p. 85–94, 2014.
[52] M. Marton, M. Vojs, E. Zdravecka, M. Himmerlich, T. Haensel, S. Krischok, M. Kotlar, P. Michniak, M. Vesely and R. Redhammer, "Raman Spectroscopy of Amorphous Carbon Prepared by Pulsed Arc Discharge in Various Gas Mixtures," Journal of Spectroscopy, vol. 2013: 467079, pp. 1-6, 2013.
[53] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S. R. P. Silva, "Raman Spectroscopy on Amorphous Carbon Films," Journal of Applied Physics, vol. 80, no. 1, pp. 440-447, 1996.
[54] A. C. Ferrari and J. Robertson, "Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon," Physical Review B, vol. 64, no. 2001: 075414, pp. 1-13, 2001.
[55] A. C. Ferrari and J. Robertson, "Raman Spectroscopy of Amorphous, Nanostructured, Diamond-like Carbon, and Nanodiamond," Philosophical Transactions of the Royal Society A, vol. 362, p. 2477–2512, 2004.
[56] H.-J. Scheibe, D. Drescher and P. Alers, "Raman Characterization of Amorphous Carbon Films," Fresenius′ Journal of Analytical Chemistry, vol. 353, no. 5–8, p. 695–697, 1995.
[57] PerkinElmer, "A Beginner’s Guide for Thermogravimetric Analysis (TGA)," Perkin Elmer, Inc., Massachusetts (USA), 2010.
[58] Z. P. Guo, E. Milin, J. Z. Wang, J. Chen and H.-K. Liu, "Silicon/Disordered Carbon Nanocomposites for Lithium-Ion Battery Anodes," Journal of The Electrochemical Society, vol. 152, no. 11, pp. A2211-A2216, 2005.
[59] Y.-X. Wang, S. Chou, H.-K. Liu and S. X. Dou, "Nanocomposites of Silicon and Carbon Derived from Coal Tar Pitch: Cheap Anode Materials for Lithium-Ion Batteries with Long Cycle Life and Enhanced Capacity," Electrochimica Acta, vol. 93, pp. 213-221, 2013.
[60] GamryInstruments, "Application Notes: Basics of Electrochemical Impedance Spectroscopy," Gamry Instruments, Inc., Warminster, PA, 2010.
[61] J. Yu, J. Yang, X. Feng, H. Jia, J. Wang and W. Lu, "Uniform Carbon Coating on Silicon Nanoparticles by Dynamic CVD Process for Electrochemical Lithium Storage," ACS Industrial & Engineering Chemistry Research, vol. 53, p. 12697?12704, 2014.
[62] P. Gao, J. Fu, J. Yang, R. Lv, J. Wang, Y. Nuli and X. Tang, "Microporous Carbon Coated Silicon Core/Shell Nanocomposite Via In Situ Polymerization for Advanced Li-ion Battery Anode Material," Physical Chemistry Chemical Physics, vol. 11, p. 11101–11105, 2009.
[63] Y. Xu, Y. Zhu and C. Wang, "Mesoporous Carbon/Silicon Composite Anodes with Enhanced Performance for Lithium-ion Batteries," Journal of Materials Chemistry A, vol. 2, p. 9751–9757, 2014.
[64] S. H. Ng, J. Wang, D. Wexler, S. Y. Chew and H. K. Liu, "Amorphous Carbon-Coated Silicon Nanocomposites: A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithium-Ion Batteries," ACS Journal of Physical Chemistry Part C: Nanomaterials and Interfaces, vol. 111, no. 29, pp. 11131-11138, 2007.
[65] A. Shahverdi, K. S. Kim, Y. Alinejad, G. Soucy and J. Mostaghimi, "Selective Oxidation of Excess Amorphous Carbon during Single-Walled Carbon Nanotubes Synthesis by Induction Thermal Plasma Process," Journal of Nano Research, vol. 2, pp. 800-812, 2009.
[66] F. M. Wachid, A. Y. Perkasa, F. A. Prasetya, N. Rosyidah and Darminto, "Synthesis and Characterization of Nanocrystalline Graphite from Coconut Shell with Heating Process," in 5th Nanoscience and Nanotechnology Symposium by American Institute of Physics, Surabaya, 2014.
[67] S. Chen, Y. Xin, Y. Zhou, F. Zhang, Y. Ma, H. Zhou and L. Qi, "Branched CNT@SnO2 Nanorods@Carbon Hierarchical Heterostructures for Lithium Ion Batteries with High Reversibility and Rate Capability," Journal of Materials Chemistry A, vol. 2, pp. 15582-15589, 2014.
[68] B. Zhou, S. Yang, L. Wu, W. Wu, W. Wei, L. Chen, H. Zhang, J. Pan and X. Xiong, "Amorphous Carbon Framework Stabilized SnO2 Porous Nanowires as High Performance Li-ion Battery Anode Materials," RSC Advances, vol. 5, p. 49926–49932, 2015.
[69] J. Zhang, C. Zhang, S. Wu, X. Zhang, C. Li, C. Xue and B. Cheng, "High-Columbic-Efficiency Lithium Battery Based on Silicon Particle Materials," Nanoscale Research Letters, vol. 10, no. 395, pp. 1-5, 2015.
[70] N. Lavoie, F. M. Courtel, P. R. Malenfant and Y. Abu-Lebdeh, "Graphene-Based Composite Anodes for Lithium-Ion Batteries," in Nanostructure Science and Technology: Nanotechnology for Lithium-Ion Batteries, Ottawa, Canada, Springer Science & Business Media, 2013, pp. 117-162.
[71] M. T. McDowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. Wang, W. D. Nix and Y. Cui, "In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres," Nano Letters, vol. 13, no. 2, p. 758–764, 2013.
[72] S. Iwamura, H. Nishihara and T. Kyotani, "Effect of Buffer Size around Nanosilicon Anode Particles for Lithium-Ion Batteries," Journal of Physical Chemistry C, vol. 116, p. 6004?6011, 2012.
[73] T. Huang, Y. Yang, K. Pu, J. Zhang, M. Gao, H. Pana and Y. Liu, "Linking Particle Size to Improved Electrochemical Performance of SiO Anodes for Li-ion Batteries," RSC Advances, vol. 7, p. 2273–2280, 2017.
[74] Z. Favors, W. Wang, H. H. Bay, Z. Mutlu, K. Ahmed, C. Liu, M. Ozkan and C. S. Ozkan, "Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries," Scientific Reports, vol. 7, pp. 1-7, 2014.
[75] J. J. Wu and W. R. Bennett, "Fundamental Investigation of Si Anode in Li-Ion Cells," in Institute of Electrical and Electronics Engineers (IEEE) Energy Tech Conference, Cleveland, US, 2012.
[76] Q. Xu, J. Li, Y. Yin, Y. Kong, Y. Guo and L. Wan, "Nano/Micro?Structured Si/C Anodes with High Initial Coulombic Efficiency in Li?Ion Batteries," Chemistry an Asian Journal, vol. 11, no. 8, pp. 1205-1209, 2016.
[77] C.-H. Yim, S. Niketic, N. Salem, O. Naboka and Y. Abu-Lebdeh, "Towards Improving the Practical Energy Density of Li-Ion Batteries: Optimization and Evaluation of Silicon: Graphite Composites in Full Cells," Journal of The Electrochemical Society, vol. 164, no. 1, pp. A6294-A6302, 2017.
[78] C.-H. Yim, F. M. Courtel and Y. Abu-Lebdeh, "A High Capacity Silicon–Graphite Composite as Anode for Lithium-ion Batteries Using Low Content Amorphous," Journal of Materials Chemistry A, vol. 1, p. 8234–8243, 2013.
[79] R. Yazami, Nanomaterials for Lithium-Ion Batteries Fundamentals and Applications, Florida, USA: CRC Press (Taylor & Francis Group), 2014.
[80] F. Beer and E. Johnston Jr., Mechanics of Materials, 2nd Edition, New York: McGraw-Hill, 1992.
[81] R. E. Sonntag and C. Borgnakke, Fundamentals of Thermodynamics, 7th Edition, Michigan: John Wiley & Sons Inc., 2009.
[82] B. Bhattarai, A. Pandey and D. A. Drabold, "Evolution of Amorphous Carbon Across Densities: An Inferential Study," Carbon, vol. 131, pp. 168-174, 2018.
[83] P. Kumar, M. Gupta, U. P. Deshpande, D. M. Phase, V. Ganesan and J. Stahn, "Density and Microstructure of a-C Thin Films," Materials Science [cond-mat.mtrl-sci], vol. 1801, pp. 1-6, 2018.
[84] W. A. Van Schalkwijk and B. Scrosati, Advances in Lithium-Ion Batteries, New York: Kluwer Academic Publisher, 2002.
[85] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, "Challenges in the Development of Advanced Li-ion Batteries: A Review," Energy & Environmental Science, vol. 4, no. 9, pp. 3243-3262, 2011.
[86] B. Simon and J.-P. Boeuve, "Rechargeable Lithium Electrochemical Cell". USA Patent 5626981, 05 June 1997.
[87] E. Markevich, G. Salitra and D. Aurbach, "Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries," ACS Energy Letters, vol. 2, no. 6, p. 1337–1345, 2017.
[88] SigmaAldrich, "Sigma Aldrich (Merck)," 2018. [Online]. Available: https://www.sigmaaldrich.com. [Accessed 26 June 2018].
[89] L. Liu, J. Lyu, T. Lia and T. Zhao, "Well-Constructed Silicon-based Materials as High-Performance Lithium-ion Battery Anodes," Nanoscale, vol. 8, p. 701–722, 2016.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2018-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明