博碩士論文 105329016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.145.196.87
姓名 林怡婕(Y-Jie Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 脈衝雷射沉積技術製作薄膜質子傳輸型固態氧化物燃料電池
(Fabrication of thin-film proton–conducting solid oxide fuel cells by using pulsed laser deposition)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今許多研究在致力於將固態氧化燃料電池的操作溫度降低,並希望以減少電解質的厚度來獲得較高的電池電性。為有效降低電解質厚度,本實驗利用雷射脈衝沉積法,製備以BaCe0.6Zr0.2Y0.2O3-δ為基礎之電解質,此氧化物在中溫(600-800℃)範圍內具有穩定之質子傳導性,可降低操作溫度,製備出的電解質的厚度可下降到小於5 μm,縮短質子傳遞路徑,且具有柱狀紋理的微結構,可降低晶界電阻。為製備良好的電解質層,在不同的基板加熱溫度下,進行雷射鍍膜,並觀察其顯微結構以及利用XRD進行成相分析,藉此找到適合做為固態氧化燃料電池的電解質之鍍膜參數,並以此參數進行電池製備。在基板上製備電解質層前,為填補兩層間的孔洞,並降低因材料上的不匹配會產生薄膜附著性差的問題,先以雷射脈衝沉積法鍍上陽極功能層,再進行電解質製備。陰極的製作是使用雷射脈衝沉積法,製作具有孔洞的La0.6Sr0.4Co0.2Fe0.8O3-δ。完整的電池具有陽極(基板)、陽極功能層、電解質、陰極四層結構,對電池進行電池能量密度的量測,並觀察電池的顯微結構。為降低電解質與陽極間的孔洞與分離情形,加入退火等步驟,以改善電池電化學表現及能量密度。但昇降溫的步驟會造成電解質的龜裂,因此去除退火步驟,避免裂縫阻擋質子傳輸,進而提升電池效能。
摘要(英) Solid oxide fuel cells (SOFCs) have drawn significant attention owing to their high efficiency. Reducing the SOFC operating temperature can be achieved by preparing thin film electrolytes. In this work, SOFCs with thin BaCe0.6Zr0.2Y0.2O3-δ (BCZY) electrolytes were fabricated by pulsed laser deposition (PLD). The thickness of BCZY could be reduced to about 3 μm.The NiO- BaCe0.6Zr0.2Y0.2O3-δ (NiO-BCZY) which played the role of anode functional layers were deposited on NiO-BCZY anode supports by PLD due to the surface pores of supports might cause defects during electrolyte deposition. After reduction of NiO to Ni at 800℃, the anode functional layers became porous while preserve fine adhesion with electrolyte. This study has also investigated the microstructure morphologies of La0.6Sr0.4Co0.2Fe0.8 (LSCF) cathode films via the PLD process. LSCF films deposited at 600℃ under 100 mtorr of oxygen pressure have dense structure when those films deposited at room temperature under the same background pressure have porous structure. A single cell had four layers : anode substrate、anode functional layer、electrolyte and cathode. The single cell with four layer and without post-annealing after deposition of each layer generated maximum power densities of 38.3 mWcm?2 at 800 °C and open circuit voltage of 0.9 V.
關鍵字(中) ★ 雷射脈衝沉積法
★ 固態氧化物燃料電池
★ 電解質
★ 陽極功能層
關鍵字(英) ★ pulsed laser deposition
★ SOFC
★ proton-conducting
★ electrolyte
★ anode functional layer
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 燃料電池簡介 1
1.2 固態氧化物燃料電池 (SOFC) 2
1.2.1 SOFC之原理[6-9] 3
1.2.2 SOFC之優缺點 4
1.2.3 SOFC之陽極探討 5
1.2.4 SOFC之陰極探討 5
1.2.5 SOFC之電解質探討 6
1.3 脈衝雷射沉積技術 7
1.3.1 脈衝雷射沉積技術原理 7
1.3.2 PLD雷射源種類 7
1.3.3 PLD的優缺點 8
1.3.4 薄膜沉積原理 9
1.4 文獻回顧 10
1.5 研究動機 12
第二章 實驗流程 13
2.1 實驗流程 13
2.2 靶材製備 13
2.3 陽極基板製備 14
2.4 脈衝雷射沉積系統 14
2.4.1 真空腔體 14
2.4.2 鍍膜氣體環境 15
2.4.3 雷射源 16
2.4.4 雷射光路 17
2.4.5 靶材載台 18
2.4.6 基板載台 19
2.4.7 Fluence 計算 20
2.4.8 鍍率計算與校正 21
2.5 分析儀器 23
2.5.1 X光繞射 (X-Ray Diffraction) 23
2.5.2 掃描式電子顯微鏡 (Scanning Electron Microscopy) 23
2.5.3 電解質能量密度測量 23
2.5.4 電化學阻抗頻譜法(EIS) 24
第三章 結果與討論 25
3.1 材料分析 25
3.1.1 陽極基板 25
3.1.2 以PLD製作NiO-BCZY 27
3.1.3 以PLD製作BCZY 29
3.1.4 以PLD製作LSCF 32
3.2 電池量測 34
3.2.1 電性量測 36
3.2.2 EIS測量 38
3.3 結論 39
3.4 未來展望 39
第四章 參考資料 40
參考文獻 [1]R. O′Hayre, S. Cha, W. Colella, F. Prinz, “Fuel cell fundamentals.”, John Wiley & Sons, 3 (2016).
[2]G. Wand, “Fuel Cells History.”, Johnson Matthey plc, 14, 13-16 (2008).
[3]W. Grove, “On Voltaic Series and the Combination of Gases by Platinum.”, Philosophical Magazine and Journal of Science, 14, 127-130 (1839).
[4]W. Grove, “On a Gaseous Voltaic Battery.”, Philosophical Magazine and Journal of Science, 21, 417–420 (1842).
[5]G. Hoogers, “Fuel cell technology handbook.”, CRC press, (2002).
[6]黃鎮江,“燃料電池”,全華科技圖書股份有限公司,(2005)
[7]EG&G Technical Services, Inc., “Fuel Cell Handbook.”, Lulu.com, 7, (2016)
[8]S. M. Haile, “Fuel cell material and components.”, Acta Materialia, 51, 5981-6000 (2003).
[9]B. Steele, A. Heinzel, “Materials for fuel-cell technologies.”, Nature, 414, 224-231 (2001).
[10]C.A. Cortes-Escobedo, J. Munoz-Saldana, A. M. Bolarin-Miro, F. S. Jesus, “Determination of strontium and lanthanum zirconates in YPSZ-LSM mixtures for SOFC.”, Journal of Power Sources, 180, 209-214 (2008).
[11]L. Bi, S. Zhang, S. Fang, Z. Tao, R. Peng, W. Liu, “A novel anode supported BaCe0.7Ta0.1Y0.2O3?δ electrolyte membrane for proton-conducting solid oxide fuel cell.”, Electrochemistry Communications, 10, 1598-1601 (2008).
[12]C. Sun, U. Stimming, “Recent anode advances in solid oxide fuel cells.” Journal of Power Sources, 171,247-260 (2007).
[13]A. Boudghene Stambouli, E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy.”, Renewable and Sustainable Energy Reviews, 6, 433–455 (2002).
[14]Y. Lin, R. Ran, Y. Zheng, Z. Shao, W. Jin, N. Xu, J. Ahnb, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3?δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell.”, Journal of Power Sources, 180, 15-22 (2008).
[15]N. Q. Minh, “Ceramic fuel cells.”, Journal of the American Ceramic Society, 76, 563-588 (1993).
[16]H. Iwahara, “High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production.”, Solid State Ionic, 28-30, 573-578 (1988).
[17]E. Fabbri, “Materials challenges toward proton-conducting oxide fuel cells: a critical review.”, Chemical Society Reviews, 39, 4355–4369 (2010).
[18]P. Schaaf, “Laser processing of materials.”, Springer, (2010).
[19]S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum.”, Physical Review B, 71, 033406 (2005).
[20]J. Perriere, C. Boulmer-Leborgne, R. Benzerga, S. Tricot, “Nanoparticle formation by femtosecond laser ablation.”, Journal of Physics D: Applied Physics, 40, 7069–7076 (2007)
[21]J. E. Geusic, H. M. Marcos, L. G. Van Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets.”, Applied Physics Letters, 4, 182-184 (1964)
[22]N. Nasani, D. Ramasamy, S. Mikhaleva, A. V. Kovalevsky, D. P. Fagg, “Fabrication and electrochemical performance of a stable anode supported thin BaCe0.4Zr0.4Y0.2O3?δ electrolyte protonic ceramic fuel cell.”, J. Power Sources, 278, 582?589 (2015).
[23]M. Liu, J. Gao, X. Liu, G. Meng, “High performance of anode supported BaZr0.1Ce0.7Y0.2 O3?δ (BZCY) electrolyte cell for IT-SOFC.”, International Journal of Hydrogen Energy, 36, 13741-13745 (2011)
[24]S. Lee, I. Park, H. Lee, D. Shin, “Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells.”. International Journal of Hydrogen Energy, 39 (26), 14342?14348 (2014).
[25]D. Pergolesi, E. Fabbri, A. D’Epifanio, E. D. Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino, E. Traversa, “High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition.”, Nature Materials, 9, 846-852 (2010).
[26]E. Fabbri, D. Pergolesi, A. D′Epifanio, E. D. Bartolomeo, G. Balestrino, S. Licoccia, E. Traversa, “Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs).” Energy & Environmental Science, 1, 355-359 (2008).
[27]E. Fabbri, D. Pergolesi, A D’Epifanio, E. D Bartolomeo, G. Balestrino, S. Licoccia, E. Traversa, “Improving the performance of high temperature protonic conductor (HTPC) electrolytes for solid oxide fuel cell (SOFC) applications.” Key Engineering Materials, 421-422,336-339 (2009).
[28]E. Fabbri, A. D′Epifanio, S. Sanna, E. D. Bartolomeo, G. Balestrino, S. Licocciab, E. Traversa, “A novel single chamber solid oxide fuel cell based on chemically stable thin films of Y-doped BaZrO3 proton conducting electrolyte.” Energy & Environmental Science, 3, 618-621 (2010).
[29]D. Pergolesi, E. Fabbri, E. Traversa, “Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance.” Electrochemistry Communications, 12, 977-980 (2010).
[30]K. Bae, D. Y. Janga, H. J. Jung, J. W. Kim, J. Son, J. H. Shim, “Micro ceramic fuel cells with multilayered yttrium-doped barium cerate and zirconate thin film electrolytes.” Journal of Power Sources, 248, 1163-1169 (2014).
[31]K. Bae, D. Y. Jang, H. Noh, H. J. Kim, J. Hong, K. J. Yoon, B. Kim, J. Son, J. H. Shim, “Performance of protonic ceramic fuel cell with thin film yttrium doped barium zirconate electrolyte.” ECS Transactions, 68, 2659-2662 (2015).
[32]K. Bae, S. Lee, D. Y. Jang, H. J. Kim, H. Lee, D. Shin, J. Son, and J. H. Shim, “High-performance protonic ceramic fuel cells with thin-film yttrium-doped barium cerate–zirconate electrolytes on compositionally gradient anodes.” ACS Applied Materials & Interfaces, 8, 9097-9103 (2016).
[33]K. Bae, H. Noh, D. Y. Jang, J. Hong, H. Kim, K. J. Yoon, J. Lee, B. Kim, J. H. Shim, J. Son, “High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix.” Journal of Materials Chemistry A, 4, 6395-6403 (2016).
[34]K. Bae, D. H. Kim, D. Y. Jang, H. J. Choi, J. Son, J. H. Shim, “Effects of non-proton-conducting anode supports on the performance of thin-film protonic ceramic fuel cells.” ECS Transactions, 78, 1945-1951 (2017).
指導教授 李勝偉 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明