參考文獻 |
[1] The CMS Collaboration. “Observation of a new boson at a mass of 125
GeV with the CMS experiment at the LHC”. In: (2012). DOI: 10.1016/j.
physletb.2012.08.021. eprint: arXiv:1207.7235.
[2] The ATLAS Collaboration. “Observation of a new particle in the search for
the Standard Model Higgs boson with the ATLAS detector at the LHC”.
In: (2012). DOI: 10.1016/j.physletb.2012.08.020. eprint: arXiv:
1207.7214.
[3] ATLAS and CMS Collaborations. “Measurements of the Higgs boson pro-
duction and decay rates and constraints on its couplings from a combined
ATLAS and CMS analysis of the LHC pp collision data at
√
s = 7 and 8
TeV”. In: (2016). DOI: 10 . 1007 / JHEP08(2016 ) 045. eprint: arXiv :
1606.02266.
[4] D. de Florian et al. “Handbook of LHC Higgs Cross Sections: 4. Decipher-
ing the Nature of the Higgs Sector”. In: (2016). DOI: 10.23731/CYRM-
2017-002. eprint: arXiv:1610.07922.
[5] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vec-
tor Mesons”. In: Physical Review Letters 13.9 (1964), pp. 321–323. DOI: 10.
1103/physrevlett.13.321. URL: https://doi.org/10.1103/
physrevlett.13.321.
[6] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”.
In: Physical Review Letters 13.16 (1964), pp. 508–509. DOI: 10 . 1103 /
physrevlett . 13 . 508. URL: https : / / doi . org / 10 . 1103 /
physrevlett.13.508.
[7] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. “Global Conserva-
tion Laws and Massless Particles”. In: Physical Review Letters 13.20 (1964),
pp. 585–587. DOI: 10.1103/physrevlett.13.585. URL: https://
doi.org/10.1103/physrevlett.13.585.
[8] Mark Thomson. Modern particle physics. New York: Cambridge University
Press, 2013. ISBN: 9781107034266. URL: http://www- spires.fnal.
gov/spires/find/books/www?cl=QC793.2.T46::2013.
[9] F. Maltoni, E. Vryonidou, and M. Zaro. “Top-quark mass effects in double
and triple Higgs production in gluon-gluon fusion at NLO”. In: (2014).
DOI: 10.1007/JHEP11(2014)079. eprint: arXiv:1408.6542.
[10] J. Baglio et al. “The measurement of the Higgs self-coupling at the LHC:
theoretical status”. In: (2012). DOI: 10.1007/JHEP04(2013)151. eprint:
arXiv:1212.5581.
[11] R. Frederix et al. “Higgs pair production at the LHC with NLO and parton-
shower effects”. In: (2014). DOI: 10.1016/j.physletb.2014.03.026.
eprint: arXiv:1401.7340.
[12] Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali. “The Hierarchy
Problem and New Dimensions at a Millimeter”. In: (1998). DOI: 10.1016/
S0370-2693(98)00466-3. eprint: arXiv:hep-ph/9803315.
[13] Lisa Randall and Raman Sundrum. “A Large Mass Hierarchy from a Small
Extra Dimension”. In: (1999). DOI: 10.1103/PhysRevLett.83.3370.
eprint: arXiv:hep-ph/9905221.
[14] Alexandra Carvalho. Gravity particles from Warped Extra Dimensions, predic-
tions for LHC. 2014. eprint: arXiv:1404.0102.
[15] A. Liam Fitzpatrick et al. “Searching for the Kaluza-Klein Graviton in Bulk
RS Models”. In: (2007). DOI: 10.1088/1126- 6708/2007/09/013.
eprint: arXiv:hep-ph/0701150.
[16] https://github.com/CrossSectionsLHC/WED.
[17] Aielet Efrati and Yosef Nir. What if λ hhh 6= 3m 2
h
/v. 2014. eprint: arXiv:
1401.0935.
[18] B. Grzadkowski et al. “Dimension-Six Terms in the Standard Model La-
grangian”. In: (2010). DOI: 10.1007/JHEP10(2010)085. eprint: arXiv:
1008.4884.
[19] Florian Goertz et al. “Higgs boson pair production in the D=6 extension of
the SM”. In: (2014). DOI: 10.1007/JHEP04(2015)167. eprint: arXiv:
1410.3471.
[20] W. Buchmuller and D. Wyler. “Effective lagrangian analysis of new in-
teractions and ?avour conservation”. In: Nuclear Physics B 268.3-4 (1986),
pp. 621–653. DOI: 10.1016/0550-3213(86)90262-2. URL: https:
//doi.org/10.1016/0550-3213(86)90262-2.
[21] Alexandra Carvalho et al. “Higgs Pair Production: Choosing Benchmarks
With Cluster Analysis”. In: (2015). DOI: 10.1007/JHEP04(2016)126.
eprint: arXiv:1507.02245.
[22] Alexandra Carvalho et al. Analytical parametrization and shape classi?cation
of anomalous HH production in the EFT approach. 2016. eprint: arXiv:1608.
06578.
[23] Performance of b tagging at sqrt(s)=8 TeV in multijet, ttbar and boosted topology
events. Tech. rep. CMS-PAS-BTV-13-001. Geneva: CERN, 2013. URL: http:
//cds.cern.ch/record/1581306.
[24] CMS Collaboration. “Reconstruction and identi?cation of tau lepton de-
cays to hadrons and tau neutrino at CMS”. In: (2015). DOI: 10.1088/
1748-0221/11/01/P01019. eprint: arXiv:1510.07488.
[25] ATLAS Collaboration. “Search for Higgs boson pair production in the b
¯
bb
¯
b
?nal state from pp collisions at
√
s = 8 TeV with the ATLAS detector”. In:
(2015). DOI: 10.1140/epjc/s10052- 015- 3628- x. eprint: arXiv:
1506.00285.
[26] ATLAS Collaboration. “Search For Higgs Boson Pair Production in the
γγb
¯
b Final State using pp Collision Data at
√
s = 8 TeV from the ATLAS De-
tector”. In: (2014). DOI: 10.1103/PhysRevLett.114.081802. eprint:
arXiv:1406.5053.
[27] ATLAS Collaboration. “Searches for Higgs boson pair production in the
hh → bbττ, γγWW?, γγbb, bbbb channels with the ATLAS detector”. In:
(2015). DOI: 10.1103/PhysRevD.92.092004. eprint: arXiv:1509.
04670.
[28] Daniel de Florian and Javier Mazzitelli. “Higgs Boson Pair Production
at Next-to-Next-to-Leading Order in QCD”. In: (2013). DOI: 10.1103/
PhysRevLett.111.201801. eprint: arXiv:1309.6594.
[29] CMS Collaboration. “Search for resonant pair production of Higgs bosons
decaying to two bottom quark-antiquark pairs in proton-proton collisions
at 8 TeV”. In: (2015). DOI: 10.1016/j.physletb.2015.08.047. eprint:
arXiv:1503.04114.
[30] CMS Collaboration. “Search for two Higgs bosons in ?nal states contain-
ing two photons and two bottom quarks in proton-proton collisions at 8
TeV”. In: (2016). DOI: 10.1103/PhysRevD.94.052012. eprint: arXiv:
1603.06896.
[31] CMS Collaboration. “A search for Higgs boson pair production in the bb
tau tau ?nal state in proton-proton collisions at sqrt(s) = 8 TeV”. In: (2017).
DOI: 10.1103/PhysRevD.96.072004. eprint: arXiv:1707.00350.
[32] CMS Collaboration. “Search for heavy resonances decaying to two Higgs
bosons in ?nal states containing four b quarks”. In: (2016). DOI: 10.1140/
epjc/s10052-016-4206-6. eprint: arXiv:1602.08762.
[33] Search for resonant pair production of Higgs bosons decaying to b
¯
b and τ + τ
?
in proton-proton collisions at
√
s = 8 TeV. Tech. rep. CMS-PAS-EXO-15-008.
Geneva: CERN, 2015. URL: https://cds.cern.ch/record/2125293.
[34] Lyndon Evans and Philip Bryant. “LHC Machine”. In: JINST 3 (2008),
S08001. DOI: 10.1088/1748-0221/3/08/S08001.
[35] CERN. Accelerator Performance and Statistics. http://acc-stats.web.
cern.ch/acc-stats/.
[36] CMS Collaboration. CMS Luminosity Public Results. https://twiki.
cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults.
[37] S. Chatrchyan et al. “The CMS experiment at the CERN LHC”. In: JINST 3
(2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
[38] The CMS magnet project: Technical Design Report. Technical Design Report
CMS. Geneva: CERN, 1997. URL: http : // cds . cern . ch / record /
331056.
[39] The CMS Collaboration. “Description and performance of track and
primary-vertex reconstruction with the CMS tracker”. In: JINST 9.10
(2014), P10009. DOI: 10.1088/1748-0221/9/10/P10009.
[40] V Karimaki et al. The CMS tracker system project: Technical Design Report.
Technical Design Report CMS. Geneva: CERN, 1997. URL: https://cds.
cern.ch/record/368412.
[41] Cristina Biino. “The CMS Electromagnetic Calorimeter: overview, lessons
learned during Run 1 and future projections”. In: Journal of Physics: Con-
ference Series 587.1 (2015), p. 012001. URL: http://stacks.iop.org/
1742-6596/587/i=1/a=012001.
[42] The CMS electromagnetic calorimeter project: Technical Design Report. Tech-
nical Design Report CMS. Geneva: CERN, 1997. URL: https://cds.
cern.ch/record/349375.
[43] The CMS hadron calorimeter project: Technical Design Report. Technical De-
sign Report CMS. Geneva: CERN, 1997. URL: http://cds.cern.ch/
record/357153.
[44] The CMS muon project: Technical Design Report. Technical Design Report
CMS. Geneva: CERN, 1997. URL: https://cds.cern.ch/record/
343814.
[45] CMS TriDAS project: Technical Design Report, Volume 1: The Trigger Systems.
Technical Design Report CMS. URL: http://cds.cern.ch/record/
706847.
[46] CMS Collaboration. CMS software. https://github.com/cms-sw.
[47] Sergio Cittolin, Attila Racz, and Paris Sphicas. CMS The TriDAS Project:
Technical Design Report, Volume 2: Data Acquisition and High-Level Trig-
ger. CMS trigger and data-acquisition project. Technical Design Report CMS.
Geneva: CERN, 2002. URL: http://cds.cern.ch/record/578006.
[48] Andreas Hoecker et al. “TMVA: Toolkit for Multivariate Data Analysis”.
In: PoS ACAT (2007), p. 040. arXiv: physics/0703039.
[49] CMS Collaboration. “Search for the standard model Higgs boson decaying
into two photons in pp collisions at sqrt(s)=7 TeV”. In: (2012). DOI: 10.
1016/j.physletb.2012.03.003. eprint: arXiv:1202.1487.
[50] CMS Collaboration. “Performance of photon reconstruction and identi-
?cation with the CMS detector in proton-proton collisions at sqrt(s) = 8
TeV”. In: (2015). DOI: 10.1088/1748-0221/10/08/P08010. eprint:
arXiv:1502.02702.
[51] CMS Collaboration. GBRlikelihood package. https://github.com/cms-
egamma/HiggsAnalysis/tree/master/GBRLikelihood.
[52] E. Norrbin and T. Sjostrand. “Production and Hadronization of Heavy
Quarks”. In: (2000). DOI: 10 . 1007 / s100520000460. eprint: arXiv :
hep-ph/0005110.
[53] Identi?cation of b quark jets at the CMS Experiment in the LHC Run 2. Tech.
rep. CMS-PAS-BTV-15-001. Geneva: CERN, 2016. URL: https://cds.
cern.ch/record/2138504.
[54] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti- k t jet clus-
tering algorithm”. In: Journal of High Energy Physics 2008.04 (2008), p. 063.
URL: http://stacks.iop.org/1126-6708/2008/i=04/a=063.
[55] The CMS Collaboration. “Measurement of B anti-B Angular Correlations
based on Secondary Vertex Reconstruction at sqrt(s)=7 TeV”. In: (2011).
DOI: 10.1007/JHEP03(2011)136. eprint: arXiv:1102.3194.
[56] CMS Collaboration. MVA Framework Of?ine Guide. https : / / twiki .
cern.ch/twiki/bin/view/CMSPublic/SWGuideMVAFramework.
[57] “Heavy ?avor identi?cation at CMS with deep neural networks”. In:
(2017). URL: http://cds.cern.ch/record/2255736.
[58] Search for the standard model Higgs boson produced through vector boson fusion
and decaying to bb with proton-proton collisions at sqrt(s) = 13 TeV. Tech. rep.
CMS-PAS-HIG-16-003. Geneva: CERN, 2016. URL: https://cds.cern.
ch/record/2160154.
[59] CMS Collaboration. “Search for the standard model Higgs boson pro-
duced in association with a W or a Z boson and decaying to bottom
quarks”. In: (2013). DOI: 10 . 1103 / PhysRevD . 89 . 012003. eprint:
arXiv:1310.3687.
[60] Jet algorithms performance in 13 TeV data. Tech. rep. CMS-PAS-JME-16-003.
Geneva: CERN, 2017. URL: https://cds.cern.ch/record/2256875.
[61] Pileup Jet Identi?cation. Tech. rep. CMS-PAS-JME-13-005. Geneva: CERN,
2013. URL: https://cds.cern.ch/record/1581583.
[62] CMS Collaboration. Measurements of Higgs boson properties in the diphoton
decay channel in proton-proton collisions at
√
s = 13 TeV. 2018. eprint: arXiv:
1804.02716.
[63] J. Alwall et al. “The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton
shower simulations”. In: (2014). DOI: 10 . 1007 / JHEP07(2014 ) 079.
eprint: arXiv:1405.0301.
[64] Benoit Hespel, David Lopez-Val, and Eleni Vryonidou. “Higgs pair pro-
duction via gluon fusion in the Two-Higgs-Doublet Model”. In: (2014).
DOI: 10.1007/JHEP09(2014)124. eprint: arXiv:1407.0281.
[65] Andy Buckley et al. “LHAPDF6: parton density access in the LHC pre-
cision era”. In: (2014). DOI: 10.1140/epjc/s10052- 015- 3318- 8.
eprint: arXiv:1412.7420.
[66] Stefano Carrazza et al. A compression algorithm for the combination of PDF
sets. 2015. eprint: arXiv:1504.06469.
[67] Jon Butterworth et al. “PDF4LHC recommendations for LHC Run II”. In:
(2015). DOI: 10 . 1088 / 0954 - 3899 / 43 / 2 / 023001. eprint: arXiv :
1510.03865.
[68] Sayipjamal Dulat et al. “New parton distribution functions from a global
analysis of quantum chromodynamics”. In: (2015). DOI: 10 . 1103 /
PhysRevD.93.033006. eprint: arXiv:1506.07443.
[69] L. A. Harland-Lang et al. “Parton distributions in the LHC era: MMHT
2014 PDFs”. In: (2014). DOI: 10.1140/epjc/s10052- 015- 3397- 6.
eprint: arXiv:1412.3989.
[70] The NNPDF Collaboration et al. “Parton distributions for the LHC Run
II”. In: (2014). DOI: 10.1007/JHEP04(2015)040. eprint: arXiv:1410.
8849.
[71] Torbjorn Sjostrand et al. “An Introduction to PYTHIA 8.2”. In: (2014). DOI:
10.1016/j.cpc.2015.01.024. eprint: arXiv:1410.3012.
[72] CMS Collaboration. “Event generator tunes obtained from underlying
event and multiparton scattering measurements”. In: (2015). DOI: 10 .
1140/epjc/s10052-016-3988-x. eprint: arXiv:1512.00815.
[73] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, De-
tectors and Associated Equipment 506.3 (2003), 250–303. DOI: 10 . 1016 /
s0168-9002(03)01368-8.
[74] https://github.com/syuvivida/DibosonBSMSignal_13TeV.
[75] Alexandra Carvalho et al. On the reinterpretation of non-resonant searches for
Higgs boson pairs. 2017. eprint: arXiv:1710.08261.
[76] Daniel Faeh and Nicolas Greiner. “Diphoton production in association
with two bottom jets”. In: (2017). DOI: 10.1140/epjc/s10052-017-
5296-5. eprint: arXiv:1706.08309.
[77] Paolo Nason. “A New Method for Combining NLO QCD with Shower
Monte Carlo Algorithms”. In: (2004). DOI: 10.1088/1126-6708/2004/
11/040. eprint: arXiv:hep-ph/0409146.
[78] Stefano Frixione, Paolo Nason, and Carlo Oleari. “Matching NLO QCD
computations with Parton Shower simulations: the POWHEG method”.
In: (2007). DOI: 10.1088/1126-6708/2007/11/070. eprint: arXiv:
0709.2092.
[79] Simone Alioli et al. “A general framework for implementing NLO calcu-
lations in shower Monte Carlo programs: the POWHEG BOX”. In: (2010).
DOI: 10.1007/JHEP06(2010)043. eprint: arXiv:1002.2581.
[80] E. Bagnaschi et al. “Higgs production via gluon fusion in the POWHEG
approach in the SM and in the MSSM”. In: (2011). DOI: 10 . 1007 /
JHEP02(2012)088. eprint: arXiv:1111.2854.
[81] CMS Collaboration. “Particle-?ow reconstruction and global event de-
scription with the CMS detector”. In: (2017). DOI: 10.1088/1748-0221/
12/10/P10003. eprint: arXiv:1706.04965.
[82] CMS Collaboration. “Determination of Jet Energy Calibration and Trans-
verse Momentum Resolution in CMS”. In: (2011). DOI: 10.1088/1748-
0221/6/11/P11002. eprint: arXiv:1107.4277.
[83] Nilanjana Kumar and Stephen P. Martin. “LHC search for di-Higgs de-
cays of stoponium and other scalars in events with two photons and two
bottom jets”. In: (2014). DOI: 10.1103/PhysRevD.90.055007. eprint:
arXiv:1404.0996.
[84] CMS Luminosity Measurements for the 2016 Data Taking Period. Tech. rep.
CMS-PAS-LUM-17-001. Geneva: CERN, 2017. URL: https : / / cds .
cern.ch/record/2257069.
[85] CMS Collaboration. “Observation of the diphoton decay of the Higgs bo-
son and measurement of its properties”. In: (2014). DOI: 10.1140/epjc/
s10052-014-3076-z. eprint: arXiv:1407.0558.
[86] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new
physics”. In: (2010). DOI: 10.1140/epjc/s10052-011-1554-0. eprint:
arXiv:1007.1727.
[87] CMS Collaboration. Higgs Analysis Combination tools. https://github.
com/cms-analysis/HiggsAnalysis-CombinedLimit. |