博碩士論文 103388602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.149.24.145
姓名 阮氏懷秋(Nguyen Thi Hoai Thu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析
(Effects of different crystal-crucible rotation conditions on flow, heat, and oxygen transport during Czochralski silicon crystal growth with a cusp magnetic field)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析
★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析★ MOCVD 行星式腔體之模型建立與傳輸現象分析
★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析
★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究★ 二段陽極處理法應用於鈦薄膜成長之研究
★ 交流電發光二極體之接面溫度與熱阻量測研究★ 液滴於具溫度梯度的微流道之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於柴氏(Czochralski)長晶法具有較高的生長速度和重量控制的技術,現在成為商用矽晶片生產的主要生長方法。然而,這種技術正面臨著如何改善生長系統和操作條件以生產高質量矽單晶體的巨大挑戰。在本研究中,針對工業型柴氏長晶法在磁場環境下的二維空間熱流質傳現象進行數值模擬,我們期望找到更好的生長過程來有效控制熱量、流量、氧雜質輸送與缺陷的形成。分析在有無Cusp磁場環境下,不同晶體坩堝旋轉條件下的流動型態、溫度分佈、氧濃度和點缺陷的形成。
在本研究之結果中發現晶體與熔區界面的氧含量是由擴散和對流機制之間的競爭所決定的。在晶體和坩堝之間的低同向旋轉差異下,擴散過程對熔體中氧輸送的影響變得強於對流效應,在同向旋轉條件下可以獲得較低濃度和均勻的氧氣徑向分佈,當晶體和坩堝在同向旋轉速率(Res / Rec = 0.5842)時,在矽熔體中會發生流動轉變。在Cusp磁場的作用下,電力和磁力改變矽熔體中的速度的大小和方向。與同向旋轉情況相比,磁場對非同向旋轉情況下的氧濃度具有更強的影響。通過Cusp磁場環境下氧含量減少或增強取決於晶體和坩堝之間的旋轉差異。與使用磁場平衡的相比,使用不平衡的Cusp磁場減少了氧含量的徑向均勻性,尤其是在反向旋轉的情況下。以相同方向旋轉晶體和坩堝也產生更平坦的缺陷轉變和更低的點缺陷濃度。晶體與坩堝使用同向旋轉時,有利於生產零缺陷的矽單晶。這是因為在同向旋轉時,固液介面形狀會更凸向晶體區域。而較凸向晶體區域的介面形狀,更容易將點缺陷從晶體中心往外排出。軸向溫度梯度得到增強,這樣可以更快地從矽熔體中拉出晶體,同時可以避免組成過冷。
摘要(英) The Czochralski process nowadays becomes a main pulling method for the production of the commercial silicon wafers due to its relatively high growth rate and possible weight control. This technique, however, is facing to the big challenges how one can improve the growth system and operation conditions to produce silicon crystals with a good quality. From this study, it is expected to find the better growth process for the effective control of the heat, flow, oxygen transport, and defect formation. 2D global numerical simulations of heat and mass transfer under the influence of magnetic field in an industrial Cz-Si growth were conducted. The flow characteristics, the distributions of temperature, oxygen concentration, and the formation of point defect under different crystal-crucible rotation conditions without and with a cusp magnetic field were analyzed.
The simulation results showed that the oxygen content along the crystal-melt interface is determined by the competition between the diffusion and convection mechanisms. At a low difference between the crystal and crucible iso-rotation rates, the effect of the diffusion process on oxygen transport in the melt becomes stronger than the effect of convection. A lower concentration and uniform radial distribution of oxygen can be obtained under the iso-rotation condition. It was found that a flow transition occurred in the silicon melt when the crystal and crucible have the same iso-rotation rate. Since that, the ratio between crystal and crucible rotational Reynolds numbers, Res/Rec, is 0.5842. Under the application of a cusp magnetic field, the electric force and the magnetic force changes the magnitude and direction of velocity in the silicon melt. The magnetic field has the stronger effect on the oxygen concentration in counter-rotation cases in comparison with iso-rotation ones. Reducing or enhancing the oxygen content by a cusp magnetic field depends on the differences between the crystal and crucible rotation rates. Using an unbalanced cusp reduces the radial uniformity of oxygen content, especially in counter-rotation cases, as compared to using a balanced one. Rotating the crystal and the crucible in the same direction also produces a flatter defect transition and a lower concentration of point defects. Producing a convex crystal-melt interface in iso-rotation cases is good for growing the defect-free crystals due to the outward diffusion of point defects from the central region to the edge of ingot. The axial temperature gradient is enhanced in iso-rotation cases. This may allow the faster pulling of crystal from the silicon melt and prevent the super-cooling during the growth.
關鍵字(中) ★ 晶體與坩堝同向及反向旋轉
★ 矽單晶生長
★ 數值模擬
★ 氧氣傳輸
★ 柴氏長晶法
關鍵字(英) ★ Crystal-crucible counter- and iso-rotation
★ Single crystal growth
★ Computer simulation
★ Oxygen transport
★ Czochralski method
論文目次 摘要 i
Abstract ii
Acknowledgements iv
Table of Contents v
List of Figures vii
List of Tables xi
Nomenclature xii
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Objectives 3
1.3. Dissertation structure 4
Chapter 2. Background 6
2.1. Introduction of Czochralski silicon crystal growth process 6
2.2. Oxygen transportation during Cz silicon growth process 9
2.3. Application of a cusp magnetic field (CMF) 14
2.4. Application of crystal-crucible rotation during the Cz silicon crystal growth 18
Chapter 3. Theoretical Formulations 21
and Computational Methods 21
3.1. Physical model 21
3.2. Theoretical formulations 22
3.2.1. Governing equations 22
3.2.2. Turbulence flow 24
3.2.3. Boundary condition for flow fields 26
3.2.4. Boundary conditions for thermal fields 27
3.2.5. Boundary condition for oxygen 28
3.2.6. Physical significance of the dimensionless numbers 29
3.3. Computational methods 31
3.3.1. Numerical methods 31
3.3.2. Grid and tolerance test 32
Chapter 4. Results and Discussions 40
4.1. Effects of crystal rotation rates on the flow, temperature, and oxygen transport under crucible counter- and iso-rotations, without a CMF 40
4.2. Effects of crystal rotation rates on the flow and oxygen transport, with a balanced and an unbalanced CMF 50
4.3. Effects of crystal-crucible counter- and iso-rotation conditions on the flow and oxygen transport at different crystal lengths under a balanced CMF 62
4.4. Effects of crystal rotation rates on defect formation and thermal stress without and with a CMF 71
4.5. Effects of crucible rotation rates on the flow, temperature and oxygen transport without a CMF 77
Chapter 5. Conclusions and Future works 83
5.1. Conclusions 83
5.2. Future works 84
References 86
Appendix A. Calculation for oxygen concentration at crucible wall and free melt surface 93
Appendix B. Modeling of initial point defect 98
Appendix C. Calculation of thermal stress 100
Appendix D. Publications during PhD study (2014-2018) 102
參考文獻 [1] S. Nishizawa, Wafer requirement for future power devices, IEEE (2015).
[2] NEDO Reports, Roles of electronics for sustainable society 2050, by the Research Development Association of Future Electron Devices, 2007 and 2008.
[3] H. Ohashi, L. Omura, Role of Simulation Technology for the Progress in Power Devices and Their Applications, IEEE Trans.Electron Devices 60 (2013) 528-534.
[4] V.V. Kakaev, Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400mm diameter Si Cz crystal growth, J. Cryst. Growth 303 (2007) 203-210.
[5] M. Vegad, N.M. Bhatt, Effect of location of zero gauss plane on oxygen concentration at crystal melt interface during growth of magnetic silicon single crystal using Czochralski technique, Procedia Technology 23 ( 2016 ) 480 – 487.
[6] L. Valek, J. Sik, Modern aspects of bulk crystal and thin film preparation_Chap.3. Defect engineering during Czochralski crystal growth and silicon wafer manufacturing, (2012).
[7] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, S. Rein, W. Wettling, I. Yamasaki, H. Sawai, H. Ohtuka, T. Warabisako, Suppression of light degradation of carrier lifetimes in low-resistivity Cz-Si solar cells, Solar Energy Materials and Solar Cells 65 (2001) 277.
[8] K.G. Moerschel, C.W. Pearce, R.E. Reusser, A study on the effects of oxygen content, initial bow and furnace processing on warpage of three inch diameter silicon wafers, Semiconductor silcion (1977) 170.
[9] X. Liu, B. Gao, S. Nakano, K. Kakimoto, Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth, J. Cryst. Growth 474 (2017) 3-7.
[10] T.Y. Tan, E.E. Gardner, W.K. Tice, Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si, Appl. Phys. Lett. 30 (1977).
[11] J.C. Chen, P.C. Guo, C.H. Chang, Y.Y. Teng, C. Hsu, H.M. Wang, C.C. Liu, Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field, J. Cryst. Growth 401 (2014) 888-894.
[12] M. Vegad, N.M. Bhatt, Review of some aspects of single crystal growth using Czochralski crystal growth technique, Procedica Technology 14 (2014) 438-446.
[13] A. Borghesi, B. Pivac, A. Sassella, A. Tella, Oxygen precipitation in silicon, J. App.Phys 77 (1995) 4170-4236.
[14] J.C. Chen, P.Y. Chiang, C.H. Chang, Y.Y. Teng, C.C. Huang, C.H. Chen, C.C. Liu, Three-dimensional numerical simulation of flow, thermal and oxygen distributions for a Czochralski silicon growth with in a transverse magnetic field, J. Cryst. Growth 401 (2014) 813-819.
[15] J.C. Chen, P.Y. Chiang, T.H.T. Nguyen, C. Hu, C.H. Chen, C.C. Liu, Numerical simulation of the oxygen concentration distribution in silicon melt for different crystal lengths during Czochralski growth with a transverse magnetic field, J. Cryst. Growth 452 (2016) 6-11.
[16] Y.Y. Teng, J.C. Chen, C.C. Huang, C.W. Lu, W.T. Wunb, C.Y. Chen, Numerical investigation of the effect of heat shield shape on the oxygen impurity distribution at the crystal–melt interface during the process of Czochralski silicon crystal growth, J. Cryst. Growth 352 (2012) 167-172.
[17] J.C. Chen, Y.Y. Teng, W.T. Wun, C.W. Lu, H.I. Chen, C.Y. Chen, W.C. Lan, Numerical simulation of oxygen transport during the CZ silicon crystal growth, J. Cryst. Growth 318 (2011) 318-323.
[18] H. Sreedharamurthy, M. Kulkarni, R.G. Schrenker, J.C. Holzer, H.W. Korb, Controlling a melt-solid interface shape of a growing silicon crystal using an unbalanced magnetic field and iso-rotation, Patent No.: US8398765 B2 (2013).
[19] T. Shen, C.M. Wu, Y.R. Li, Experimental investigation on the effect of crystal and crucible rotation on thermocapillary convection in a Czochralski configuration, Int. J. Thermal Sciences 104 (2016) 20-28.
[20] K. Hoshikawa, H. Kohda, H. Hirata, H. Nakanishi, Low oxygen content Czochralski silicon crystal growth, Jpn. J. Appl. Phys. 19 (1980) L33-36.
[21] X. Liu, L. Liu, Z. Li, Y. Wang, Effects of static magnetic fields on thermal fluctuations in the melt of industrial Cz-Si crystal growth, J. Cryst. Growth 360 (2012) 38-42.
[22] T. Shen, C.M. Wu, Y.R. Li, Experimental investigation on the effect of crystal and crucible rotation on thermocapillary convection in a Czochralski configuration, Int. J. Thermal Sciences 104 (2016) 20-28.
[23] I. Kanda, A laboratory study of two-dimensional and three-dimensional instabilities in a quasi-two-dimensional flow driven by differential rotation of a cylindrical tank and a disc on the free surface, Physics of Fluid 16 (2004) 3325-3340.
[24] WU. ChunMei, L. YouRong, Instability of forced flow in a rotating cylindrical pool with a differentially rotating disk on the free surface, Sci.China.Tech.Sci 53 (2010) 2477-2488.
[25] P.R. Gunjal, M.S. Kulkarni, P.A. Ramachandran, Melt flow simulations of Czochralski crystal growth process of silicon for large crystals, ECS Transactions 3 (2006) 41-52.
[26] N. Kobayashi, T. Arizumi, The numerical analyses of the solid-liquid interface shape during crystal growth by the Czochralski method. Part II. Effects of the crucible rotation, Jpn. J. Appl. Phys. 9 (1970) 1255-1259.
[27] O. Anttila, Czochralski growth of silicon crystals, Silfex Incorporated-A division of Lam Research Corporation, Eaton, OH, USA (2015).
[28] G. Fisher, M.R. Seacrist, R.W. Standley, Silicon crystal growth and wafer technologies, Proceeding of IEEE 100 (2012) 1454-1474.
[29] B.R. Pamplin, Crystal growth (Second Edition), International Series in the Science of the Solid State, Vo.16, Chapter 1, 1980.
[30] J. Friedrich, L. Stockmeier, G. Muller, Constitutional super-cooling in Czochralski growth of heavily doped silicon crystals, Acta Physica Polonica A, Polish Academy Sciences Institute of Physics, Vo.124, No.2, 2013.
[31] Science-photo-library (https://www.sciencephoto.com/media/482610/view/czochralski-silicon-crystal-growth)
[32] W.C. O’Mara, R.B. Herring, L.P. Hunt, Handbook of semiconductor silicon technology, Noyes Publications (2007).
[33] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, S. Rein, W. Wettling, I. Yamasaki, H. Sawai, H. Ohtuka, T. Warabisako, Suppression of light degradation of carrier lifetimes in low-resistivity Cz-Si solar cells, Solar Energy Materials and Solar Cells 65 (2001) 277.
[34] P. Rudolph, Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale, J. Cryst. Growth 310 (2008) 1298-1306.
[35] T. Suzuki, N. Isawa, Y. Okubo, K. Hoshi, in: H.R. Huff, R.J. Kriegler, Y. Takeishi (Eds.), Semiconductor Silicon 1981, Electrochemical Society, Pennington, NJ, 1981.
[36] K.M. Kim, P. Smetana, Striations in CZ silicon crystals grown under various axial magnetic field strengths, J. Appl. Phys., 58 (1985) 2731-2735.

[37] D. Vizman, M. Watanabe, J. Friedrich, G. Muller, Influence of different types of magnetic fields on the interface shape in a 200 mm Si-EMCZ configuration, J. Cryst. Growth 303 (2007) 221-225.
[38] X. Liu, L. Liu, Z. Li, Y. Wang, Effects of static magnetic fields on thermal fluctuations in the melt of industrial CZ-Si crystal growth, J. Cryst. Growth 360 (2012) 38-42.
[39] X. Liu, L. Liu, Z. Li, Y. Wang, Effects of cusp-shaped magnetic field on melt convection and oxygen transport in an industrial CZ-Si crystal growth, J. Cryst. Growth 354 (2012) 101-108.
[40] H.J. Cho, B.Y. Lee, J.Y. Lee, The effects of several growth parameters on the formation behavior of point defects in Czochralski-grown silicon crystals, J. Cryst. Growth 292 (2016) 260-265.
[41] Y.H. Hong, B.C. Sim, K.B. Shim, Effect of zero-Gauss plane and magnetic intensity on oxygen concentration in cusp-magnetic CZ crystals, J. Cryst. Growth 295 (2006) 141-147.
[42] Y.H. Hong, B.W. Nam, B.C. Sim, Effect of asymmetric magnetic fields on crystal–melt interface in silicon CZ process, J. Cryst. Growth 366 (2013) 95-100.
[43] P. Daggolu, J.W. Ryu, A. Galyukov, A. Kondratyev, Analysis of the effect of symmetric/asymmetric cusp magnetic fields on melt/crystal interface during CZ Si growth, J. Cryst. Growth, In Press.
[44] O.A. Noghabi, M. Jom?aa, M. M’hamdi, Analysis of W-shape melt/crystal interface formation in Czochralski silicon crystal growth, J. Cryst. Growth 362 (2013) 77-82.
[45] C.J. Jing, T. Tsukada, M. Hozawa, K. Shimamura, N. Ichinose, T. Shishido. Numerical studies of wave pattern in an oxide melt in the Czochralski crystal growth, J. Cryst. Growth 265 (2004) 505-517.
[46] C.J. Jing, N. Imaishi, T. Sato, Y. Miyazawa, Three-dimensional numerical simulation of oxide melt flow in Czochralski configuration, J. Cryst. Growth 216 (2000) 372-388.
[47] V. Kumar, B. Basu, S. Enger, G. Brenner, F. Durst, Role of Marangoni convection in Si-Czochralski melts - Part II: 3D predictions with crystal rotation, J. Cryst. Growth 255 (2003) 27-39.
[48] P. Capper, D. Elwell, Crucible rotation and crystal growth in the Czochralski geometry, J. Cryst. Growth 30 (1975) 352-356.
[49] S.S. Son, P.O. Nam, K.W. Yi, The effect of crystal rotation direction on the thermal and velocity fields of a Czochralski system with a low Prandtl number melt, J. Cryst. Growth 292 (2006) 272-281.
[50] X. Liu, L. Liu, Z.Y. Li, Y. Wang, Effects of cusp-shaped magnetic field on melt convection and oxygen transport in an industrial CZ-Si crystal growth, J. Cryst. Growth 354 (2012) 101-108.
[51] H. Matsuo, R.B. Ganesh, S. Nakano, L. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, Thermal dynamical analysis of oxygen incorporation from a quartz crucible during solidification of multi-crystalline silicon for solar cell, J. Cryst. Growth 310 (2008) 4666-4671.
[52] A.D. Smirnov, V.V. Kalaev, Development of oxygen transport model in Czochralski growth of silicon crystals, J. Cryst. Growth 310 (2008) 2970-2976.
[53] M.M. Rahman; A. Merilainen; A.K.M. Sadrul Islam; M.J. Lampinen, Evaluating k–? with One–equation Turbulence Model, Procedia Engineering 56 (2013), 206-216.
[54] C.H. Lin, P.W. Chen, C.Y. Chen, Simulations of silicon Cz growth in a cusp magnetic field, Magneto hydrodynamics 47 (2011) 17-28.
[55] T. Yokoyama, K. Yoshihara, T. Saishoji, K. Nakamura, R. Suewa, Silicon wafer, its manufacturing method, and its manufacturing apparatus, Pub. No.: US 2006/0016387 A1 (2006).
[56] V.V. Voronkov, R. Falster, Vacancy and self-interstitial concentration incorporated into growing silicon crystals, J. Appl. Phys., 86 (1999) 5975-5982.
[57] V.A. Zabelin, V.V. Kalaev, Modeling of point defect formation in silicon monocrystals, Microelectronic Engineering 69 (2003) 641-645.
[58] T. Sinno, R.A. Brown, Modeling microdefect formation in Czochralski silicon, J. Electrochemical Society 146 (6) (1999) 2300-2312.
[59] K. Tanahashi, M. Kikuchi, T. Higashino, N. Inoue, Y. Mizokawa, Concentration of point defects in growing CZ silicon crystal under the internal stresses: effects of impurity doping and thermal stress, Physica B 273-274 (1999) 493-496.
[60] T. Abe, T. Takahashi, Intrinsic point defect behavior in silicon crystals during growth from the melt: A model derived from experimental results, J. Cryst. Growth 334 (2011) 16-36.
[61] M. Watanabe, D. Vizman, J. Friedrich, G. Muller, Large modification of crystal-melt interface shape during Si crystal growth by using electromagnetic Czochralski method (EMCZ), J. Cryst. Growth 292 (2006) 252-256.
[62] A. Muiznieks, G. Raming, A. Muhlbauer, J. Virbulis, B. Hanna, W.v. Ammon, Stress induced dislocation generation in large FZ- and Cz-silicon single crystals-numerical model and qualitative considerations, J. Cryst. Growth 230 (2001) 305-313.
[63] T. Taishi, Y. Ohno, I. Yonenaga, K. Hoshikawa, Influence of seed/crystal interface shape on dislocation generation in Czochralski Si crystal growth, Physica B 401-402 (2007) 560-563.
指導教授 陳志臣(Chen Jyh Chen) 審核日期 2018-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明