參考文獻 |
[1] S. Nishizawa, Wafer requirement for future power devices, IEEE (2015).
[2] NEDO Reports, Roles of electronics for sustainable society 2050, by the Research Development Association of Future Electron Devices, 2007 and 2008.
[3] H. Ohashi, L. Omura, Role of Simulation Technology for the Progress in Power Devices and Their Applications, IEEE Trans.Electron Devices 60 (2013) 528-534.
[4] V.V. Kakaev, Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400mm diameter Si Cz crystal growth, J. Cryst. Growth 303 (2007) 203-210.
[5] M. Vegad, N.M. Bhatt, Effect of location of zero gauss plane on oxygen concentration at crystal melt interface during growth of magnetic silicon single crystal using Czochralski technique, Procedia Technology 23 ( 2016 ) 480 – 487.
[6] L. Valek, J. Sik, Modern aspects of bulk crystal and thin film preparation_Chap.3. Defect engineering during Czochralski crystal growth and silicon wafer manufacturing, (2012).
[7] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, S. Rein, W. Wettling, I. Yamasaki, H. Sawai, H. Ohtuka, T. Warabisako, Suppression of light degradation of carrier lifetimes in low-resistivity Cz-Si solar cells, Solar Energy Materials and Solar Cells 65 (2001) 277.
[8] K.G. Moerschel, C.W. Pearce, R.E. Reusser, A study on the effects of oxygen content, initial bow and furnace processing on warpage of three inch diameter silicon wafers, Semiconductor silcion (1977) 170.
[9] X. Liu, B. Gao, S. Nakano, K. Kakimoto, Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth, J. Cryst. Growth 474 (2017) 3-7.
[10] T.Y. Tan, E.E. Gardner, W.K. Tice, Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si, Appl. Phys. Lett. 30 (1977).
[11] J.C. Chen, P.C. Guo, C.H. Chang, Y.Y. Teng, C. Hsu, H.M. Wang, C.C. Liu, Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field, J. Cryst. Growth 401 (2014) 888-894.
[12] M. Vegad, N.M. Bhatt, Review of some aspects of single crystal growth using Czochralski crystal growth technique, Procedica Technology 14 (2014) 438-446.
[13] A. Borghesi, B. Pivac, A. Sassella, A. Tella, Oxygen precipitation in silicon, J. App.Phys 77 (1995) 4170-4236.
[14] J.C. Chen, P.Y. Chiang, C.H. Chang, Y.Y. Teng, C.C. Huang, C.H. Chen, C.C. Liu, Three-dimensional numerical simulation of flow, thermal and oxygen distributions for a Czochralski silicon growth with in a transverse magnetic field, J. Cryst. Growth 401 (2014) 813-819.
[15] J.C. Chen, P.Y. Chiang, T.H.T. Nguyen, C. Hu, C.H. Chen, C.C. Liu, Numerical simulation of the oxygen concentration distribution in silicon melt for different crystal lengths during Czochralski growth with a transverse magnetic field, J. Cryst. Growth 452 (2016) 6-11.
[16] Y.Y. Teng, J.C. Chen, C.C. Huang, C.W. Lu, W.T. Wunb, C.Y. Chen, Numerical investigation of the effect of heat shield shape on the oxygen impurity distribution at the crystal–melt interface during the process of Czochralski silicon crystal growth, J. Cryst. Growth 352 (2012) 167-172.
[17] J.C. Chen, Y.Y. Teng, W.T. Wun, C.W. Lu, H.I. Chen, C.Y. Chen, W.C. Lan, Numerical simulation of oxygen transport during the CZ silicon crystal growth, J. Cryst. Growth 318 (2011) 318-323.
[18] H. Sreedharamurthy, M. Kulkarni, R.G. Schrenker, J.C. Holzer, H.W. Korb, Controlling a melt-solid interface shape of a growing silicon crystal using an unbalanced magnetic field and iso-rotation, Patent No.: US8398765 B2 (2013).
[19] T. Shen, C.M. Wu, Y.R. Li, Experimental investigation on the effect of crystal and crucible rotation on thermocapillary convection in a Czochralski configuration, Int. J. Thermal Sciences 104 (2016) 20-28.
[20] K. Hoshikawa, H. Kohda, H. Hirata, H. Nakanishi, Low oxygen content Czochralski silicon crystal growth, Jpn. J. Appl. Phys. 19 (1980) L33-36.
[21] X. Liu, L. Liu, Z. Li, Y. Wang, Effects of static magnetic fields on thermal fluctuations in the melt of industrial Cz-Si crystal growth, J. Cryst. Growth 360 (2012) 38-42.
[22] T. Shen, C.M. Wu, Y.R. Li, Experimental investigation on the effect of crystal and crucible rotation on thermocapillary convection in a Czochralski configuration, Int. J. Thermal Sciences 104 (2016) 20-28.
[23] I. Kanda, A laboratory study of two-dimensional and three-dimensional instabilities in a quasi-two-dimensional flow driven by differential rotation of a cylindrical tank and a disc on the free surface, Physics of Fluid 16 (2004) 3325-3340.
[24] WU. ChunMei, L. YouRong, Instability of forced flow in a rotating cylindrical pool with a differentially rotating disk on the free surface, Sci.China.Tech.Sci 53 (2010) 2477-2488.
[25] P.R. Gunjal, M.S. Kulkarni, P.A. Ramachandran, Melt flow simulations of Czochralski crystal growth process of silicon for large crystals, ECS Transactions 3 (2006) 41-52.
[26] N. Kobayashi, T. Arizumi, The numerical analyses of the solid-liquid interface shape during crystal growth by the Czochralski method. Part II. Effects of the crucible rotation, Jpn. J. Appl. Phys. 9 (1970) 1255-1259.
[27] O. Anttila, Czochralski growth of silicon crystals, Silfex Incorporated-A division of Lam Research Corporation, Eaton, OH, USA (2015).
[28] G. Fisher, M.R. Seacrist, R.W. Standley, Silicon crystal growth and wafer technologies, Proceeding of IEEE 100 (2012) 1454-1474.
[29] B.R. Pamplin, Crystal growth (Second Edition), International Series in the Science of the Solid State, Vo.16, Chapter 1, 1980.
[30] J. Friedrich, L. Stockmeier, G. Muller, Constitutional super-cooling in Czochralski growth of heavily doped silicon crystals, Acta Physica Polonica A, Polish Academy Sciences Institute of Physics, Vo.124, No.2, 2013.
[31] Science-photo-library (https://www.sciencephoto.com/media/482610/view/czochralski-silicon-crystal-growth)
[32] W.C. O’Mara, R.B. Herring, L.P. Hunt, Handbook of semiconductor silicon technology, Noyes Publications (2007).
[33] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, S. Rein, W. Wettling, I. Yamasaki, H. Sawai, H. Ohtuka, T. Warabisako, Suppression of light degradation of carrier lifetimes in low-resistivity Cz-Si solar cells, Solar Energy Materials and Solar Cells 65 (2001) 277.
[34] P. Rudolph, Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale, J. Cryst. Growth 310 (2008) 1298-1306.
[35] T. Suzuki, N. Isawa, Y. Okubo, K. Hoshi, in: H.R. Huff, R.J. Kriegler, Y. Takeishi (Eds.), Semiconductor Silicon 1981, Electrochemical Society, Pennington, NJ, 1981.
[36] K.M. Kim, P. Smetana, Striations in CZ silicon crystals grown under various axial magnetic field strengths, J. Appl. Phys., 58 (1985) 2731-2735.
[37] D. Vizman, M. Watanabe, J. Friedrich, G. Muller, Influence of different types of magnetic fields on the interface shape in a 200 mm Si-EMCZ configuration, J. Cryst. Growth 303 (2007) 221-225.
[38] X. Liu, L. Liu, Z. Li, Y. Wang, Effects of static magnetic fields on thermal fluctuations in the melt of industrial CZ-Si crystal growth, J. Cryst. Growth 360 (2012) 38-42.
[39] X. Liu, L. Liu, Z. Li, Y. Wang, Effects of cusp-shaped magnetic field on melt convection and oxygen transport in an industrial CZ-Si crystal growth, J. Cryst. Growth 354 (2012) 101-108.
[40] H.J. Cho, B.Y. Lee, J.Y. Lee, The effects of several growth parameters on the formation behavior of point defects in Czochralski-grown silicon crystals, J. Cryst. Growth 292 (2016) 260-265.
[41] Y.H. Hong, B.C. Sim, K.B. Shim, Effect of zero-Gauss plane and magnetic intensity on oxygen concentration in cusp-magnetic CZ crystals, J. Cryst. Growth 295 (2006) 141-147.
[42] Y.H. Hong, B.W. Nam, B.C. Sim, Effect of asymmetric magnetic fields on crystal–melt interface in silicon CZ process, J. Cryst. Growth 366 (2013) 95-100.
[43] P. Daggolu, J.W. Ryu, A. Galyukov, A. Kondratyev, Analysis of the effect of symmetric/asymmetric cusp magnetic fields on melt/crystal interface during CZ Si growth, J. Cryst. Growth, In Press.
[44] O.A. Noghabi, M. Jom?aa, M. M’hamdi, Analysis of W-shape melt/crystal interface formation in Czochralski silicon crystal growth, J. Cryst. Growth 362 (2013) 77-82.
[45] C.J. Jing, T. Tsukada, M. Hozawa, K. Shimamura, N. Ichinose, T. Shishido. Numerical studies of wave pattern in an oxide melt in the Czochralski crystal growth, J. Cryst. Growth 265 (2004) 505-517.
[46] C.J. Jing, N. Imaishi, T. Sato, Y. Miyazawa, Three-dimensional numerical simulation of oxide melt flow in Czochralski configuration, J. Cryst. Growth 216 (2000) 372-388.
[47] V. Kumar, B. Basu, S. Enger, G. Brenner, F. Durst, Role of Marangoni convection in Si-Czochralski melts - Part II: 3D predictions with crystal rotation, J. Cryst. Growth 255 (2003) 27-39.
[48] P. Capper, D. Elwell, Crucible rotation and crystal growth in the Czochralski geometry, J. Cryst. Growth 30 (1975) 352-356.
[49] S.S. Son, P.O. Nam, K.W. Yi, The effect of crystal rotation direction on the thermal and velocity fields of a Czochralski system with a low Prandtl number melt, J. Cryst. Growth 292 (2006) 272-281.
[50] X. Liu, L. Liu, Z.Y. Li, Y. Wang, Effects of cusp-shaped magnetic field on melt convection and oxygen transport in an industrial CZ-Si crystal growth, J. Cryst. Growth 354 (2012) 101-108.
[51] H. Matsuo, R.B. Ganesh, S. Nakano, L. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, Thermal dynamical analysis of oxygen incorporation from a quartz crucible during solidification of multi-crystalline silicon for solar cell, J. Cryst. Growth 310 (2008) 4666-4671.
[52] A.D. Smirnov, V.V. Kalaev, Development of oxygen transport model in Czochralski growth of silicon crystals, J. Cryst. Growth 310 (2008) 2970-2976.
[53] M.M. Rahman; A. Merilainen; A.K.M. Sadrul Islam; M.J. Lampinen, Evaluating k–? with One–equation Turbulence Model, Procedia Engineering 56 (2013), 206-216.
[54] C.H. Lin, P.W. Chen, C.Y. Chen, Simulations of silicon Cz growth in a cusp magnetic field, Magneto hydrodynamics 47 (2011) 17-28.
[55] T. Yokoyama, K. Yoshihara, T. Saishoji, K. Nakamura, R. Suewa, Silicon wafer, its manufacturing method, and its manufacturing apparatus, Pub. No.: US 2006/0016387 A1 (2006).
[56] V.V. Voronkov, R. Falster, Vacancy and self-interstitial concentration incorporated into growing silicon crystals, J. Appl. Phys., 86 (1999) 5975-5982.
[57] V.A. Zabelin, V.V. Kalaev, Modeling of point defect formation in silicon monocrystals, Microelectronic Engineering 69 (2003) 641-645.
[58] T. Sinno, R.A. Brown, Modeling microdefect formation in Czochralski silicon, J. Electrochemical Society 146 (6) (1999) 2300-2312.
[59] K. Tanahashi, M. Kikuchi, T. Higashino, N. Inoue, Y. Mizokawa, Concentration of point defects in growing CZ silicon crystal under the internal stresses: effects of impurity doping and thermal stress, Physica B 273-274 (1999) 493-496.
[60] T. Abe, T. Takahashi, Intrinsic point defect behavior in silicon crystals during growth from the melt: A model derived from experimental results, J. Cryst. Growth 334 (2011) 16-36.
[61] M. Watanabe, D. Vizman, J. Friedrich, G. Muller, Large modification of crystal-melt interface shape during Si crystal growth by using electromagnetic Czochralski method (EMCZ), J. Cryst. Growth 292 (2006) 252-256.
[62] A. Muiznieks, G. Raming, A. Muhlbauer, J. Virbulis, B. Hanna, W.v. Ammon, Stress induced dislocation generation in large FZ- and Cz-silicon single crystals-numerical model and qualitative considerations, J. Cryst. Growth 230 (2001) 305-313.
[63] T. Taishi, Y. Ohno, I. Yonenaga, K. Hoshikawa, Influence of seed/crystal interface shape on dislocation generation in Czochralski Si crystal growth, Physica B 401-402 (2007) 560-563. |