參考文獻 |
[1] J.T. Oladeji, E.A. Itabiyi, P.O. Okekunle. A comprehensive review of biomass pyrolysis as
a process of renewable energy generation. Journal of Natural Sciences Research. 5
(2015), 99-105.
[2] R.A. Voloshin, M.V. Rodionova, S.K. Zharmukhamedov, T.N. Veziroglu, S.I.
Allakhverdiev. Review: Biofuel production from plant and algal biomass.
International Journal of Hydrogen Energy. 41 (2016), 17257–17273.
doi:10.1016/j.ijhydene.2016.07.084.
[3] A. Demirba?. Global Renewable Energy Resources. Energy Sources, Part A: Recovery,
Utilization, and Environmental Effects. 28 (2006), 779–792.
doi:10.1080/00908310600718742.
[4] R.Z. Vigouroux. Pyrolysis of biomass. Royal Institute of Technology. Stockholm, Swede.
(2001).
[5] T. Kan, V. Strezov, T.J. Evans. Lignocellulosic biomass pyrolysis: A review of product
properties and effects of pyrolysis parameters. Renewable and Sustainable Energy
Reviews. 57 (2016), 1126-1140. http://dx.doi.org/10.1016/j.rser.2015.12.185
[6] B. Balagurumurthy, R. Singh, T. Bhaskar. Catalysts for Thermochemical Conversion of
Biomass. Recent Advances in Thermo-Chemical Conversion of Biomass. (2015),
109–132. doi:10.1016/b978-0-444-63289-0.00004-1.
[7] A. Aho, T. Salmi, D.Y. Murzin. Catalytic pyrolysis of lignocellulosic biomass. Role of
Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals. (2013),
137-159.
[8] M.J. Antal, S. Allen, X. Dai. B. Shimizu, M.S. Tam and M. Gronli. Attainment of the
theoretical yield of carbon from biomass. Ind. Eng. Chem. Res. 39 (2000), 4024-
4031.
[9] A.V. Bridgwater and G.V.C. Peacoke. Fast pyrolysis process for biomass. Renewable and
Sustainable Energy Reviews. 4 (2000), 1-73.
78
[10] R. Coco, S.B. Reddy Karri and T. Knowlton. Introduction to Fluidization. American
Institute of Chemical Engineers. (2014), 21-29.
[11] S. Yaman. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy and
Conversion Management. 45 (2004), 651-671.
[12] A.I. Bamigboye and O. Oniya. Pyrolytic conversion of corncobs to medium grade fuels
and chemical preservatives. 3 (2003), 50-53.
[13] G.W. Huber, S. Iborra, A. Corma. Chem. Rev. 10.6 (2006) 848.
[14] C. Satyanarayana, D. Srikant, H. Gurav. Catalyst Deactivation and Regeneration,
Industrial Catalytic Processes for Fine and Specialty Chemicals. (2016), 187–219.
[15] U.S. Department of Energy. Biomass Energy Basics. Biomass Energy Basics | NREL, U.S.
Department of Energy, www.nrel.gov/workingwithus/re-biomass.html. Accessed
21 Sept. 2017.
[16] A. Sharma, V. Pareek, D. Zhang. Biomass pyrolysis—A review of modelling, process
parameters and catalytic studies. Renewable and Sustainable Energy Reviews. 50
(2015), 1081–1096.
[17] R.A. Voloshin, M.V. Rodionova, S.K. Zharmukhamedov, T.N. Veziroglu, S.I.
Allakhhverdiev. Review: Biofuel production from plant and algal biomass.
International Journal of Hydrogen Energy. 41 (2016), 17257-17273.
[18] H.S. Heo, H.J. Park, J.-I. Dong, S.H. Park, S. Kim, D.J. Suh, et al. Fast pyrolysis of rice
husk under different reaction conditions. Journal of Industrial and Engineering
Chemistry. 16 (2010), 27–31.
[19] A.W. Weimer. Fluidized Bed Reactor Processes. Carbide, Nitride and Boride Materials
Synthesis and Processing. (1997), 169–180.
[20] A. Bridgwater. Review of fast pyrolysis of biomass and product upgrading. Biomass and
Bioenergy. 38 (2012), 68–94.
79
[21] S.A. Arni. Comparison of slow and fast pyrolysis for converting biomass into fuel.
Renewable Energy. (2017).
[22] Y. Xue, S. Zhou, R.C. Brown, A. Kelkar, X. Bai. Fast pyrolysis of biomass and waste
plastic in a fluidized bed reactor. Fuel. 156 (2015), 40–46.
[23] V. Dhyani, T. Bhaskar. A comprehensive review on the pyrolysis of lignocellulosic biomass.
Renewable Energy. (2017).
[24] R. French, S. Czernik. Catalytic pyrolysis of biomass for biofuels production. Fuel
Processing Technology. 91 (2010), 25–32.
[25] H. Zhang, R. Xiao, H. Huang, G. Xiao. Comparison of non-catalytic and catalytic fast
pyrolysis of corncob in a fluidized bed reactor. Bioresource Technology. 100
(2009), 1428–1434.
[26] K. Wang, P.A. Johnston, R.C. Brown. Comparison of in-situ and ex-situ catalytic pyrolysis
in a micro-reactor system. Bioresource Technology. 173 (2014), 124–131.
[27] C. Hu, R. Xiao, H. Zhang. Ex-situ catalytic fast pyrolysis of biomass over HZSM-5 in a
two-stage fluidized-bed/fixed-bed combination reactor. Bioresource Technology.
243 (2017), 1133–1140.
[28] S. Shao, H. Zhang, Y. Wang, R. Xiao, L. Heng, D. Shen. Catalytic Pyrolysis of Biomass-
Derived Compounds: Coking Kinetics and Formation Network. Energy & Fuels. 29
(2015), 1751–1757.
[29] S. Du, D.P. Gamliel, M.V. Giotto, J.A. Valla, G.M. Bollas. Coke formation of model
compounds relevant to pyrolysis bio-oil over ZSM-5. Applied Catalysis A: General.
513 (2016), 67–81.
[30] H.S. Fogler. Elements of chemical reaction engineering. Chemical Engineering Science.
42 (1987), 707–715.
[31] H. Zhang, Y. Wang, S. Shao, R. Xiao. An experimental and kinetic modeling study
including coke formation for catalytic pyrolysis of furfural. Combustion and Flame.
173 (2016), 258–265.
80
[32] Q. Xue, T. Heindel, R. Fox. A CFD model for biomass fast pyrolysis in fluidized-bed
reactors. Chemical Engineering Science. 66 (2011), 2440–2452.
[33] P. Mellin, Q. Zhang, E. Kantarelis, W. Yang. An Euler–Euler approach to modeling
biomass fast pyrolysis in fluidized-bed reactors – Focusing on the gas phase.
Applied Thermal Engineering. 58 (2013), 344–353.
[34] G. Froment, Modeling of catalyst deactivation, Applied Catalysis A: General. 212 (2001),
117–128.
[35] COMSOL Multiphysics 5.3. Documentations (2017)
[36] C. Crowe, M. Sommerfeld, and Y. Tsuji. Multiphase flows with droplets and particles.
CRC Press, Boca Raton. (1998).
[37] B.G.M. van Wachem, J.C. Schouten, C.M. van den Bleek, R. Krishna, and J.L. Sinclair.
Comparative analysis of CFD models of dense gas-solid systems. AIChE Journal.
47 (2001), 1035-1051.
[38] D. Gidaspow. Multiphase flow and fluidization. Academic Press, San Diego. (1994).
[39] C.Y. Wen and Y.H. Yu. Mechanics of fluidization. Chemical Engineering Progress
Symposium Series. 62 (1966), 100-110.
[40] S. Ergun. Fluid flow through packed columns. Chemical Engineering Progress. 48 (1952),
89-94.
[41] C. Jun, Z. Li, X. Hong, X. Yaohua. Numerical simulation of the carbon deposition effect
in tubular fixed bed methane reforming reactor over Ni-Catalyst. Acta Petrolei
Sinica. 32 (2016) 951-958
[42] A. Ma’Ruf, B. Pramudono, N. Aryanti. Lignin isolation process from rice husk by alkaline
hydrogen peroxide: Lignin and silica extracted. (2017). doi:10.1063/1.4978086. |