博碩士論文 105328024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.129.13.201
姓名 葉政緯(YE,ZHENG-WEI)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析
(Numerical analysis of carbon concentration in GaN films growth via MOCVD in horizontal reactor)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析
★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析★ MOCVD 行星式腔體之模型建立與傳輸現象分析
★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析
★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究★ 二段陽極處理法應用於鈦薄膜成長之研究
★ 交流電發光二極體之接面溫度與熱阻量測研究★ 液滴於具溫度梯度的微流道之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,氮化鎵薄膜材料因為擁有耐高溫、耐高壓與電組小等特性,被視為未來半導體材料的重心之一。而氮化鎵是以金屬有機化學氣相沉積法(MOCVD)製成,並以三甲基鎵(TMGa)與氨氣(NH3)作為前驅物進行磊晶。為了達成半導體元件的需求,控制氮化鎵的電阻值則相當重要,當碳濃度過高的時候,薄膜電阻值也會過高,因此控制薄膜碳含量是一件很重要的事。
由於氮化鎵在實驗時無法量測腔內中的含碳氣體,使進行實驗無法確切了解氣相中的化學反應,因此建立含碳反應的數值模型相當關鍵,在過去的參考文獻已經建立了隨著製程溫度變化的氮化鎵含碳反應模型,但是根據文獻的實驗碳濃度也會隨著壓力、載氣與氨氣的流量變化,因此本研究將建立與溫度、壓力、氣體流量有關的碳反應模型,藉此深入探討各項製程參數的變化對薄膜含碳濃度的影響。
最後研究結果顯示,溫度上升的時候,碳濃度會因為解吸速度上升而降低,而壓力上升的時候,氮化鎵與含碳物種吸附量會上升,但因為壓力同時會影響到解吸速度進而使碳濃度下降,另外在三甲基鎵流量上升的時候,碳濃度會因為熱裂解產生更多的含碳物種而增加,在氨氣流量增加時,會使甲基與氨氣的反應加速形成不易吸附到表面的甲烷,而使碳濃度下降,最後當氫氣流量上升時,碳濃度會因為氫氣減少主要碳吸附物種而降低。同整模擬結果後可以得到結論,要製成含碳濃度較低的薄膜,可以在製程上以高溫、高壓、高氨氣、高氫氣、低三甲基鎵流量進行長晶。
摘要(英) In recent years, GaN film materials are regarded as one of important future semiconductor materials because of their high temperature resistance, high voltage resistance and low resistance. Gallium nitride is produced by metal organic chemical vapor deposition (MOCVD). Epitaxial growth using trimethylgallium (TMGa) and ammonia (NH3) as precursors. In order to achieve the requirements of semiconductor components, controlling the resistance value of gallium nitride is very important. When the carbon concentration is too high, the resistance is also too high, so controlling the carbon content of the film is an important point.
Since GaN cannot measure the carbon-containing gas in the reactor during the experiment, it is impossible to accurately understand the chemical reaction in the gas phase. Therefore, it is important to establish a numerical model containing the carbon reaction. In the past,references have been established the gallium nitride carbon-containing reaction model with different temperatures, according to the references the carbon concentration also varies with the pressure, carrier gas, and ammonia flow. Our study will establish the model that carbon concentration related to temperature, pressure, and gas flow. The model is used to further investigate the effect of carbon on the film in the variation of various parameters.
Then the results of the study show when the temperature rises, the carbon concentration will decrease due to the increase of the desorption rate. When the pressure rises, the adsorption flux of gallium nitride and carbonaceous species will increase. However,the pressure will affect the desorption rate.So the carbon concentration will decreases. In addition, when the flow rate of trimethylgallium increases, the carbon concentration increases due to the pyrolysis to produce more carbon species. When the ammonia flow rate increases, the reaction between methyl and ammonia accelerates and the product methane is not easy to adsorb. The methane will decrease the carbon concentration. Finally, when the hydrogen flow rate rises, the carbon concentration will decrease as the hydrogen reduces the main carbon-adsorbed species. After the simulation results, it can be concluded that a film with a lower carbon concentration can epitaxy by having a high temperature, a high pressure, a high ammonia gas, a high hydrogen gas, and a low trimethylgallium flow rate in the process.
關鍵字(中) ★ 金屬有機化學氣相沉積法
★ 氮化鎵
★ 含碳濃度
★ 水平式腔體
關鍵字(英) ★ Metal Organic Chemical Vapor Deposition,horizontal reactor
★ gallium nitride
★ carbon
★ horizontal reactor
論文目次 摘要 IV
Abstract V
致謝 VII
目錄 VIII
圖目錄 XI
表目錄 XIV
符號說明 XV
第一章 緒論 1
1-1 研究背景 1
1-2 MOCVD薄膜沉積過程 2
1-2-1 氣相反應過程 2
1-2-2薄膜表面生長過程 3
1-2-3吸附過程 4
1-3 MOCVD系統組成 4
1-4 文獻回顧 6
1-5 研究動機與目的 10
第二章 研究方法 21
2-1 數學模型 21
2-1-1 物理系統與基本假設 21
2-1-2基本假設 21
2-1-3 統御方程式 22
2-1-4 邊界條件 23
2-2 混合氣體物理特性 24
2-3 氣相化學反應與路徑 25
2-2-1 氮化鎵氣相反應與化學途徑 (Gas phase reactions) 26
2-2-2 碳氣相反應與化學途徑 27
2-4 表面化學計算 27
2-3-1 表面反應 (Collision Theory) 27
2-3-2 解吸反應 (Collision Theory) 30
2-5 薄膜沉積速率 31
2-6 薄膜中含碳濃度計算 31
2-7 無因次參數 32
第三章 數值方法 40
3-1 數值求解步驟 40
3-2 網格配置 40
3-3 收斂公差測試 41
第四章 結果與討論 44
4-1 氮化鎵薄膜沉積驗證與反應式簡化探討 44
4-2 溫度對薄膜沉積率與薄膜含碳濃度之影響與驗證 46
4-3 壓力對薄膜生長速率與薄膜含碳濃度之影響 47
4-4 流量對薄膜生長速率與薄膜含碳濃度之影響 48
第五章 結論與未來研究方向 72
5-1 結論 72
5-2 未來研究方向 73
參考文獻 74
參考文獻 [1]S.Nakamura,T. Mukai,and M. Senoh,“Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting”,Appl. Phys. Lett. 64 (1994) 1687-1689.
[2] 羅文雄, "半導體製造技術," 滄海圖書資訊股份有限公司, 2011.
[3] 莊達人, "VLSI 製造技術," 高立圖書有限公司, 1996.
[4] D. Sengupta, S. Mazumder, W. Kuykendall, and S. A. Lowry,“Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth”, Journal of Crystal Growth, vol. 279, pp. 369-382, 2005.
[5] M. Dauelsberg,E.J. Thrush, B. Schineller, J. Kaeppeler, “Technology of MOVPE Production Tools, ”Elsevier Ltd, (2004)
[6] R. A. Talalaev, E. V. Yakovlev, S. Yu. Karpov,“Modeling of InGaN MOVPE in AIX 200 Reactor and AIX 2000 HT Planetary Reactor”, MRS Internet Journal Nitride Semiconductor Research
[7] Haibo Yin, Xiaoliang Wang, Guoxin Hu, Junxue Ran, Hongling Xiao, and Jinmin Li,“Operational Optimization of GaN Thin Film Growth Employing Numerical Simulation in a Showerhead MOCVD Reactor”, Chinese Academy of Sciences, 2008
[8] C. H. Chen, H. Liu, D. Steigerwald, W. Imler, C. P. Kuo, M. G. Craford,“A study of parasitic reactions between NH3 and TMGa or TMAI r”,Journal of Electronic Materials, vol. 25, pp. 1004-1008, (1996)
[9] M. Dauelsberga,, C. Martina , H. Protzmanna,“Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors”, Journal of Crystal Growth 298 (2007) 418–424
[10] C. Martina , M. Dauelsberga, H. Protzmanna,“Modelling of group-III nitride MOVPE in the closed coupled showerhead reactor and Planetary Reactor”,Journal of Crystal Growth,vol 303 ,pp318–322,(2007)
[11] D.D. Koleske, A.E. Wickenden,“Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN”, Journal of Crystal Growth 242 (2002) 55
[12] Orjan Danielsson,Xun Li, Lars Ojamae,“A model for carbon incorporation from trimethyl gallium in chemical vapor deposition of gallium nitride”,Journal of Materials Chemistry C, 4, 863(2016)
[13]林瑤,“考量氣體分子吸附性質之MOCVD垂直反應腔體模擬分析」”,國立中央大學,碩士論文,民國104年。
[14] Ulrich Memmert and Ming L. Yu, "Pyrolysis of trimethylgallium on GaAs(100) surfaces", Appl. Phys. Lett. 56, 1883 (1990)
[15] K. W. KOLASINSKI,“Surface Science:Foundations of Catalysisand Nanoscience Second Edition”, Department of Chemistry, West Chester University PA,2008
[16] X.G. He, D.G. Zhao , D.S. Jiang,“Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition”, Thin Solid Films (2014),Pages 135-139
[17] R. M. NIX,“An Introduction to Surface Chemistry”, School of Biological & Chemical Sciences Queen Mary, University of London
指導教授 陳志臣(Chen, Jyh-Chen) 審核日期 2018-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明