博碩士論文 105328023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.135.214.175
姓名 唐逸軒(I-Hsuan Tang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 水熱法合成CuFe片狀氫氧化物觸媒於 水電解產氫之研究
(Hydrothermal Synthesis of CuFe-Layered Double Hydroxides Electrocatalysts for Water Splitting)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 開發出具有雙功能催化效果與低成本的水電解產氫之觸媒一直是重要的研究主題,如何提高觸媒的催化活性是當前需解決之問題。本研究提出以過渡金屬Cu與Fe合成具有雙功能之片狀氫氧化物(Layered double hydroxides, LDHs)觸媒。使用水熱法進行觸媒之製備,並將研究分為三階段,從基材的選擇到前驅物溶液的條件優化,最後進行CuFe-LDHs觸媒比例的最佳化,透過表面形貌分析、元素成分分析以及電化學量測對CuFe-LDHs觸媒進行分析與探討。
本研究成功製備CuFe-LDHs觸媒於鎳金屬多孔材表面,從SEM圖得到比例1:1的CuFe-LDHs觸媒具有良好的披覆性與高表面積的片狀結構。在析氫與析氧反應中,皆表現優異的性能 (HER:170 mV@ 10 mA/cm2,Tafel斜率為102 mV/dec;OER:1.57 V@ 10 mA/cm2,Tafel斜率為50 mV/dec),經由10小時長時間穩定性測試,觸媒性能只衰減0.6 %,上述結果顯示成功製備出具有雙功效之水電解觸媒。
摘要(英) The development of a low-cost catalyst with dual-functional catalytic effects for water electrolysis to produce hydrogen has been an important research topic. How to improve the catalytic activity of the catalyst is particularly important. In this study, we propose to use transition metals Cu and Fe to synthesize a dual-functional layered double hydroxides (LDHs) catalyst. The hydrothermal method was used for the catalyst preparation. This study includes three stages, from the selection of the substrate to the optimization of the conditions of the precursor solution, and finally the optimization of the CuFe-LDHs catalyst ratio. Surface morphology analysis, elemental composition analysis and electrochemical measurement were used to analyze and explore CuFe-LDHs catalyst.
In this study, CuFe-LDHs catalysts were successfully prepared on the surface of nickel foam. The CuFe-LDHs catalyst with a ratio of 1:1 from the SEM image has good coverage and high surface area. Excellent performance in both hydrogen evolution and oxygen evolution reactions (HER: 170 mV @ 10 mA/cm2, Tafel slope 102 mV/dec; OER: 1.57 V@10 mA/cm2, Tafel slope 50 mV/dec). And the catalyst performance is only attenuated by 0.6 % through a 10-hour long-term stability test. The results show that water electrocatalysts with double efficacy can be successfully prepared.
關鍵字(中) ★ LDHs觸媒
★ 水熱法
★ 水電解產氫
★ 析氫反應
★ 析仰反應
關鍵字(英) ★ LDHs catalyst
★ Hydrothermal method
★ Water electrolysis
★ HER
★ OER
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1-1 前言 1
1-2 氫能 2
1-3 產氫技術 3
1-4 研究動機與目的 5
第二章 基礎理論與文獻回顧 7
2-1 水電解產氫之基本原理 7
2-2 水電解理論電壓 8
2-3 法拉第電解定律 9
2-4 析氫反應與析氧反應 9
2-4-1 析氫反應 9
2-4-2 析氧反應 11
2-5 文獻回顧 12
2-5-1 非貴金屬觸媒 12
2-5-2 過渡金屬觸媒 15
2-5-3 層狀雙氫氧化物(LDH)觸媒材料 16
第三章 實驗方法 19
3-1實驗架構與實驗藥品 19
3-2 水熱法合成 21
3-3 LDH電極製備 21
3-4 電化學分析 22
3-4-1 線性掃描伏安法 23
3-4-2 交流阻抗分析 23
3-4-3 長時間穩定性 24
3-5 表面形貌分析 24
3.5.1 場發式電子顯微鏡 25
3.6 元素分析 25
3-6-1 X光繞射儀 25
3-6-2 X光光電子能譜儀 25
第四章 結果與討論 27
4-1 基材對CuFe觸媒的影響 27
4-1-1 表面形貌分析 27
4-1-2 析氫反應之分析 30
4-1-3 析氧反應之分析 36
4-2 改變水熱合成之pH值對CuFe-LDHs觸媒的影響 41
4-2-1 表面形貌分析 42
4-2-2 不同尿素比例之析氫反應分析 42
4-2-3 不同尿素比例之析氧反應分析 45
4-3 不同比例之CuFe-LDHs觸媒性能探討 48
4-3-1 表面形貌分析 48
4-3-2 表面元素分析 49
4-3-3 不同比例之CuFe-LDHs觸媒於析氫反應分析 50
4-3-4 不同比例之CuFe-LDHs觸媒於析氧反應分析 53
4-3-4 CuFe-LDHs觸媒穩定性分析 56
第五章 結論與未來方向 60
5-1結論 60
5-2未來方向 61
參考文獻 62
參考文獻 [1] A. Midilli, M. Ay, I. Dincer, M. A. Rosen, “On hydrogen and hydrogen energy strategies: I: current status and needs”, Renew. Sust. Energ. Rev., Vol. 9, pp. 255-271, 2005.
[2] Y. Ge, Q. Zhi, “Literature review: the green economy, clean energy policy and employment,” Energy Procedia, Vol. 88, pp. 257-264, 2016.
[3] S. M. Lu, “A review of high-efficiency motors: specification, policy, and technology,” Renew. Sust. Energ. Rev., Vol. 59, pp. 1-12, 2016.
[4] W. Lubitz, W. Tumas, “Hydrogen:? an overview”, Chem. Rev., Vol. 107, pp. 3900-3909, 2007.
[5] J. D. Holladay, J. Hu, D. L. King, Y. Wang, “An overview of hydrogen production technologies”, Catal. Today, Vol. 39, pp. 244-260, 2009.
[6] G. J. Stiegel, M. Ramezan, “Hydrogen from coal gasification: an economical pathway to a sustainable energy future”, Int. J. Coal. Geol., Vol. 65, pp. 173-190, 2006.
[7] H. Balat, “Hydrogen from biomass-present scenario and future prospects”, Int. J. Hydrogen Energy, Vol. 35, pp. 7416-7426, 2010.
[8] S. Y. Tee, K. Y. Win, W. S. Teo, L. D. Koh, S. Liu, C. P. Teng, M. Y. Han, “Recent progress in energy-driven water splitting”, Adv. Sci., Vol. 4, pp. 1600337-1600361, 2017.
[9] J. D. Holladay, J. Hu, D. L. King, Y. Wang, “An overview of hydrogen production technologies”, Catal. Today, Vol. 139, pp. 244-260, 2009.
[10] K. Mazloomi, N. B. Sulaiman, H. Moayedi, “Electrical efficiency of electrolytic hydrogen production”, Int. J. Electrochem SC., Vol.7, pp.3314-3326, 2012.
[11] Q. Yuan, Z. Zhou, J. Zhuang, X. Wang, “Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities”, Che. Commun., Vol. 46, pp. 1491-1493, 2010.
[12] X. Yang, A. Y. Lu, Y. Zhu, S. Min, M. N. Hedhili, Y. Han, K. W. Huang, L. J. Li, “Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution”, Nanoscale, Vol. 7, pp. 10974-10981, 2015.
[13] Y. P. Hsu, S. W. Lee, J. K. Chang, C. J. Tseng, K. R. Lee, C. H. Wang, “Effects of Platinum doping on the photoelectrochemical properties of Fe2O3 electrodes”, Int. J. Electrochem. Sci., Vol. 8, pp. 11615-11623, 2013.
[14] K. R. Lee, Y. P. Hsu, J. K. Chang, S. W. Lee, C. J. Tseng, J. S. C. Jang, “Effects of spin speed on the photoelectrochemical properties of Fe2O3 thin films”, Int. J. Electrochem. Sci., Vol. 9, pp. 7680-7692, 2014.
[15] C. J. Tseng, C. H. Wang, K. W. Cheng, “Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process”, Sol. Energy Mater. Sol. Cells, Vol. 96, pp. 33-42, 2012.
[16] Q. Liang, K. Huang, X. Wu, X. Wang, W. Ma, S. Feng, “Composition-controlled synthesis of Ni2?xCoxP nanocrystals as bifunctional catalysts for water splitting”, RSC Adv., Vol. 7, pp. 7906-7913, 2017.
[17] Z. Li, M. Shao, H. An, Z. Wang, S. Xu, M. Wei, D. G. Evans, X. Duan, “Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions”, Chem. Sci., Vol. 6, pp. 6624-6631, 2015.
[18] M. K. Bates, Q. Jia, H. Doan, W. Liang, S. Mukerjee, “Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction”, ACS Catal., Vol. 6, pp. 155-161, 2016.
[19] A. Guzman-Vargas, J. Vazquez-Samperio, M. A. Oliver-Tolentino, G. Ramos-Sanchez, J. L. Flores-Moreno, E. Reguera, “Influence on the electrocatalytic water oxidation of M2+/M3+ cation arrangement in NiFe LDH: experimental and theoretical DFT evidences”, Electrocatalysis-US, Vol. 8, pp. 383-391, 2017.
[20] P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan, B. Zhang, X. Sheng, Q. Daniel, L. Sun, “Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation”, Nat. Commun., Vol. 9, pp. 381-391, 2018.
[21] X. Zou, Y. Zhang, “Noble metal-free hydrogen evolution catalysts for water splitting”, Chem. Soc. Rev., Vol. 44, pp. 5148-5180, 2015.
[22] F. C. Walsh, “The overall rates of electrode reactions: Faraday′s laws of electrolysis”, Transactions of the IMF, Vol. 69, pp. 155-157, 1991.
[23] X. Li, X. Hao, A. Abudula, G. Guan, “Nanostructured catalysts for electrochemical water splitting: current state and prospects”, J. Mater. Chem., Vol. 4, pp. 11973-12000, 2016.
[24] J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, T. F. Jaramillo, “Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials”, ACS Catal., Vol. 4, pp. 3957-3971, 2014.
[25] Q. Lu, G. S. Hutchings, W. Yu, Y. Zhou, R. V. Forest, R. Tao, J. Rosen, B. T. Yonemoto, Z. Cao, H. Zheng, J. Q. Xiao, F. Jiao, J. G. Chen, “Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution” Nat. Commun., Vol, 6, pp. 6567-6574, 2015.
[26] A. Chen, P. Holt-Hindle, “Platinum-based nanostructured materials: synthesis, properties, and applications”, Chem. Rev., Vol, 110, pp. 3767-3804, 2010.
[27] X. Niu, H. Zhao, C. Chen, M. Lan, “Enhancing the electrocatalytic activity of Pt-Pd catalysts by introducing porous architectures”, ChemCatChem, Vol. 5, pp. 1416-1425, 2013.
[28] B. S. Choi, Y. W. Lee, S. W. Kang, J. W. Hong, J. Kim, I. Park, S. W. Han, “Multimetallic alloy nanotubes with nanoporous framework”, ACS Nano., Vol. 6, pp. 5659-5667, 2012.
[29] Y. Yamauchi, T. Ohsuna, K. Kuroda, “Synthesis and structural characterization of a highly ordered mesoporous Pt-Ru alloy via evaporation-mediated direct templating”, Chem. Mater., Vol. 19, pp. 1335-1342, 2007.
[30] H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao, Z. Tang, “Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity”, Nat. Commun., Vol. 6, pp. 6430-6438, 2015.
[31] M. H. Miles, M. A. Thomason, “Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric Studies”, J. Electrochem. Soc., Vol. 123, pp. 1459-1461, 1976.
[32] C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, “Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction”, J. Am. Chem. Soc., Vol. 135, pp. 16977-16987, 2013.
[33] A. Raj, “Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells”, J. Mater. Sci., Vol. 28, pp. 4375-4382, 1993.
[34] E. Navarro-Flores, Z. Chong, S. Omanovic, “Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium”, J. Mol. Catal. A: Chem., Vol. 226, pp. 179-197, 2005.
[35] K. Ngamlerdpokin, N. Tantavichet, “Electrodeposition of nickel-copper alloys to use as a cathode for hydrogen evolution in an alkaline media” Int. J. Hydrogen Energy., Vol. 39, pp.2505-2515, 2015.
[36] M. Y. Gao, C. Yang, Q. B. Zhang, Y. W. Yu, Y. X. Hua, Y. Li, P. Dong, “Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution”, Electrochim. Acta., Vol. 215, pp. 609-616, 2016.
[37] L. Lv, Z. Li, K. H. Xue, Y. Ruan, X. Ao, H. Wan, X. Miao, B. Zhang, J. Jiang, C. Wang, K. Ostrikov, “Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation, Nano Energy, Vol. 47, pp. 275-284, 2018.
[38] X. Li, D. Du, Y. Zhang, W. Xing, Q. Xue, Z. Yan, “Layered double hydroxides toward high-performance supercapacitors”, J. Mater. Chem. A, Vol. 5, pp. 15460-15485, 2017.
[39] F. Cavani, F. Trifiro, A. Vaccari, “Hydrotalcite-type anionic clays: Preparation, properties and applications”, Catal. Today, Vol. 11, pp. 173-301, 1991.
[40] G. Fan, F. Li, D. G. Evans, X. Duan, “Catalytic applications of layered double hydroxides: recent advances and perspectives”, Chem. Soc. Rev., Vol. 43, pp. 7040-7066, 2014.
[41] M. R. Gennero, D Chialvo, S. L. Marchiano, A. J. Arvia, “The mechanism of oxidation of copper in alkaline solutions”, J. Appl. Electrochem., Vol. 14, pp. 165-175, 1984.
[42] Z. P. Xu, G. Q. Lu, “Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3:?LDH formation mechanism”, Chem. Mater., Vol. 17, pp. 1055-1062, 2005.
[43] O. Akhavan, R. Azimirad, S. Safad, E. Hasani, “CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts”, J. Mater. Chem., Vol. 21, pp. 9634-9640, 2010.
[44] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, “Resolving surface chemical states in XPS analysis of ?rst row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni”, Appl. Surf. Sci., Vol. 257, pp. 2717-2730, 2011.
[45] M. Salou, B. Lescop, S. Rioual, A. Lebon, J. B. Youssef, B. Rouvellou, “Initial oxidation of polycrystalline permalloy surface”, Surf. Sci., Vol. 602, pp. 2901-2906, 2008.
[46] D. S. Raja, X. F. Chuah, S. Y. Lu, “In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities”, Adv. Energy Mater., Vol. 8, pp. 1801065-1801074, 2018.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2018-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明