參考文獻 |
[1] A. Midilli, M. Ay, I. Dincer, M. A. Rosen, “On hydrogen and hydrogen energy strategies: I: current status and needs”, Renew. Sust. Energ. Rev., Vol. 9, pp. 255-271, 2005.
[2] Y. Ge, Q. Zhi, “Literature review: the green economy, clean energy policy and employment,” Energy Procedia, Vol. 88, pp. 257-264, 2016.
[3] S. M. Lu, “A review of high-efficiency motors: specification, policy, and technology,” Renew. Sust. Energ. Rev., Vol. 59, pp. 1-12, 2016.
[4] W. Lubitz, W. Tumas, “Hydrogen:? an overview”, Chem. Rev., Vol. 107, pp. 3900-3909, 2007.
[5] J. D. Holladay, J. Hu, D. L. King, Y. Wang, “An overview of hydrogen production technologies”, Catal. Today, Vol. 39, pp. 244-260, 2009.
[6] G. J. Stiegel, M. Ramezan, “Hydrogen from coal gasification: an economical pathway to a sustainable energy future”, Int. J. Coal. Geol., Vol. 65, pp. 173-190, 2006.
[7] H. Balat, “Hydrogen from biomass-present scenario and future prospects”, Int. J. Hydrogen Energy, Vol. 35, pp. 7416-7426, 2010.
[8] S. Y. Tee, K. Y. Win, W. S. Teo, L. D. Koh, S. Liu, C. P. Teng, M. Y. Han, “Recent progress in energy-driven water splitting”, Adv. Sci., Vol. 4, pp. 1600337-1600361, 2017.
[9] J. D. Holladay, J. Hu, D. L. King, Y. Wang, “An overview of hydrogen production technologies”, Catal. Today, Vol. 139, pp. 244-260, 2009.
[10] K. Mazloomi, N. B. Sulaiman, H. Moayedi, “Electrical efficiency of electrolytic hydrogen production”, Int. J. Electrochem SC., Vol.7, pp.3314-3326, 2012.
[11] Q. Yuan, Z. Zhou, J. Zhuang, X. Wang, “Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities”, Che. Commun., Vol. 46, pp. 1491-1493, 2010.
[12] X. Yang, A. Y. Lu, Y. Zhu, S. Min, M. N. Hedhili, Y. Han, K. W. Huang, L. J. Li, “Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution”, Nanoscale, Vol. 7, pp. 10974-10981, 2015.
[13] Y. P. Hsu, S. W. Lee, J. K. Chang, C. J. Tseng, K. R. Lee, C. H. Wang, “Effects of Platinum doping on the photoelectrochemical properties of Fe2O3 electrodes”, Int. J. Electrochem. Sci., Vol. 8, pp. 11615-11623, 2013.
[14] K. R. Lee, Y. P. Hsu, J. K. Chang, S. W. Lee, C. J. Tseng, J. S. C. Jang, “Effects of spin speed on the photoelectrochemical properties of Fe2O3 thin films”, Int. J. Electrochem. Sci., Vol. 9, pp. 7680-7692, 2014.
[15] C. J. Tseng, C. H. Wang, K. W. Cheng, “Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process”, Sol. Energy Mater. Sol. Cells, Vol. 96, pp. 33-42, 2012.
[16] Q. Liang, K. Huang, X. Wu, X. Wang, W. Ma, S. Feng, “Composition-controlled synthesis of Ni2?xCoxP nanocrystals as bifunctional catalysts for water splitting”, RSC Adv., Vol. 7, pp. 7906-7913, 2017.
[17] Z. Li, M. Shao, H. An, Z. Wang, S. Xu, M. Wei, D. G. Evans, X. Duan, “Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions”, Chem. Sci., Vol. 6, pp. 6624-6631, 2015.
[18] M. K. Bates, Q. Jia, H. Doan, W. Liang, S. Mukerjee, “Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction”, ACS Catal., Vol. 6, pp. 155-161, 2016.
[19] A. Guzman-Vargas, J. Vazquez-Samperio, M. A. Oliver-Tolentino, G. Ramos-Sanchez, J. L. Flores-Moreno, E. Reguera, “Influence on the electrocatalytic water oxidation of M2+/M3+ cation arrangement in NiFe LDH: experimental and theoretical DFT evidences”, Electrocatalysis-US, Vol. 8, pp. 383-391, 2017.
[20] P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan, B. Zhang, X. Sheng, Q. Daniel, L. Sun, “Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation”, Nat. Commun., Vol. 9, pp. 381-391, 2018.
[21] X. Zou, Y. Zhang, “Noble metal-free hydrogen evolution catalysts for water splitting”, Chem. Soc. Rev., Vol. 44, pp. 5148-5180, 2015.
[22] F. C. Walsh, “The overall rates of electrode reactions: Faraday′s laws of electrolysis”, Transactions of the IMF, Vol. 69, pp. 155-157, 1991.
[23] X. Li, X. Hao, A. Abudula, G. Guan, “Nanostructured catalysts for electrochemical water splitting: current state and prospects”, J. Mater. Chem., Vol. 4, pp. 11973-12000, 2016.
[24] J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, T. F. Jaramillo, “Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials”, ACS Catal., Vol. 4, pp. 3957-3971, 2014.
[25] Q. Lu, G. S. Hutchings, W. Yu, Y. Zhou, R. V. Forest, R. Tao, J. Rosen, B. T. Yonemoto, Z. Cao, H. Zheng, J. Q. Xiao, F. Jiao, J. G. Chen, “Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution” Nat. Commun., Vol, 6, pp. 6567-6574, 2015.
[26] A. Chen, P. Holt-Hindle, “Platinum-based nanostructured materials: synthesis, properties, and applications”, Chem. Rev., Vol, 110, pp. 3767-3804, 2010.
[27] X. Niu, H. Zhao, C. Chen, M. Lan, “Enhancing the electrocatalytic activity of Pt-Pd catalysts by introducing porous architectures”, ChemCatChem, Vol. 5, pp. 1416-1425, 2013.
[28] B. S. Choi, Y. W. Lee, S. W. Kang, J. W. Hong, J. Kim, I. Park, S. W. Han, “Multimetallic alloy nanotubes with nanoporous framework”, ACS Nano., Vol. 6, pp. 5659-5667, 2012.
[29] Y. Yamauchi, T. Ohsuna, K. Kuroda, “Synthesis and structural characterization of a highly ordered mesoporous Pt-Ru alloy via evaporation-mediated direct templating”, Chem. Mater., Vol. 19, pp. 1335-1342, 2007.
[30] H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao, Z. Tang, “Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity”, Nat. Commun., Vol. 6, pp. 6430-6438, 2015.
[31] M. H. Miles, M. A. Thomason, “Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric Studies”, J. Electrochem. Soc., Vol. 123, pp. 1459-1461, 1976.
[32] C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, “Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction”, J. Am. Chem. Soc., Vol. 135, pp. 16977-16987, 2013.
[33] A. Raj, “Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells”, J. Mater. Sci., Vol. 28, pp. 4375-4382, 1993.
[34] E. Navarro-Flores, Z. Chong, S. Omanovic, “Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium”, J. Mol. Catal. A: Chem., Vol. 226, pp. 179-197, 2005.
[35] K. Ngamlerdpokin, N. Tantavichet, “Electrodeposition of nickel-copper alloys to use as a cathode for hydrogen evolution in an alkaline media” Int. J. Hydrogen Energy., Vol. 39, pp.2505-2515, 2015.
[36] M. Y. Gao, C. Yang, Q. B. Zhang, Y. W. Yu, Y. X. Hua, Y. Li, P. Dong, “Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution”, Electrochim. Acta., Vol. 215, pp. 609-616, 2016.
[37] L. Lv, Z. Li, K. H. Xue, Y. Ruan, X. Ao, H. Wan, X. Miao, B. Zhang, J. Jiang, C. Wang, K. Ostrikov, “Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation, Nano Energy, Vol. 47, pp. 275-284, 2018.
[38] X. Li, D. Du, Y. Zhang, W. Xing, Q. Xue, Z. Yan, “Layered double hydroxides toward high-performance supercapacitors”, J. Mater. Chem. A, Vol. 5, pp. 15460-15485, 2017.
[39] F. Cavani, F. Trifiro, A. Vaccari, “Hydrotalcite-type anionic clays: Preparation, properties and applications”, Catal. Today, Vol. 11, pp. 173-301, 1991.
[40] G. Fan, F. Li, D. G. Evans, X. Duan, “Catalytic applications of layered double hydroxides: recent advances and perspectives”, Chem. Soc. Rev., Vol. 43, pp. 7040-7066, 2014.
[41] M. R. Gennero, D Chialvo, S. L. Marchiano, A. J. Arvia, “The mechanism of oxidation of copper in alkaline solutions”, J. Appl. Electrochem., Vol. 14, pp. 165-175, 1984.
[42] Z. P. Xu, G. Q. Lu, “Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3:?LDH formation mechanism”, Chem. Mater., Vol. 17, pp. 1055-1062, 2005.
[43] O. Akhavan, R. Azimirad, S. Safad, E. Hasani, “CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts”, J. Mater. Chem., Vol. 21, pp. 9634-9640, 2010.
[44] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, “Resolving surface chemical states in XPS analysis of ?rst row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni”, Appl. Surf. Sci., Vol. 257, pp. 2717-2730, 2011.
[45] M. Salou, B. Lescop, S. Rioual, A. Lebon, J. B. Youssef, B. Rouvellou, “Initial oxidation of polycrystalline permalloy surface”, Surf. Sci., Vol. 602, pp. 2901-2906, 2008.
[46] D. S. Raja, X. F. Chuah, S. Y. Lu, “In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities”, Adv. Energy Mater., Vol. 8, pp. 1801065-1801074, 2018. |