博碩士論文 100690002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.133.152.153
姓名 何珮綺(Pei-Chi Ho)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 生態元素比與生物體型大小影響浮游生物掠食食物網能量傳遞與結構
(Ecological stoichiometry and body size determine energy transfer and trophic structure in grazing food webs)
相關論文
★ 經驗動態方程分析浮游植物多樣性與生態系功能的交互作用-跨系統比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生態元素比理論(ecological stoichiometry)結合元素流動量、能量傳遞效率、獵物選擇,提供食物網多面向並整合的研究架構。生物元素比的中心理論在於探討資源元素比 (主要考量碳氮磷比例)與消費者元素比的差異造成消費者生長效率降低。例如,若浮游植物碳氮(C:N)與碳磷(C:P)比過高會降低浮游動物合成生物質量與成長速率,因此浮游動物傾向選擇碳氮磷比接近自己的獵物。除了生物元素比,體型大小亦會影響浮游動物的代謝率以及掠食者-獵物體型比 (predator-prey mass ratio, PPMR),進而影響水域環境的食物鏈長度。過去研究從實驗室控制的培養實驗中發現生物元素比以及體型大小確實會改變生物能量傳遞效率與獵物選擇偏好,但野外自然環境的證據仍十分缺乏。另外生物元素比與體型大小的關聯也少有研究。我的論文嘗試藉野外觀察實驗與理論生態模擬探討(1) 獵物元素比如何影響浮游動物生產率,(2) 體型與生物元素比的關聯及體型決定生物元素比的機制,(3) 營養鹽供給與獵物元素比如何影響掠食者-獵物體型比。我在亞熱帶區海洋野外的實驗結果顯示,浮游動物生產率與獵物(浮游植物)C:N及C:P比例呈負相關,顯示氮與磷元素對浮游動物生產力的重要性。亞熱帶海洋以及翡翠水庫的浮游生物元素比研究則發現,C:N比例是體型大小的函數:浮游植物C:N比例隨體型上昇,而異營為主的生物C:N比例隨體型下降,而C:N比例的最大值出現在50μm。我以資源獲取率異速增長(allometry)的浮游生物食物網模型模擬來解釋其機制:浮游植物碳累積速度隨體型大小增加,而呼吸碳消耗降低異營為主生物的C:N比例。異營生物C:N比例隨體型上昇而降低的結果意涵著浮游動物傾向捕食體型較大、C:N比例較小且接近自身元素比需求的獵物。我測量亞熱帶海洋系統的浮游生物穩定同位素資訊,發現當營養鹽濃度高,足以支持較多大型獵物時,掠食者-獵物體型比較小,表示浮游動物在營養鹽充足的環境中會捕捉較多大型獵物。本研究結合野外實驗觀察與理論模擬指出生物元素比與體型大小共同改變次級生產率與獵物選擇,顯示二者交互作用影響食階能量傳遞的重要性。
摘要(英) Ecological stoichiometry integrates elemental fluxes, energy transfer efficiency, and prey selectivity into a comprehensive food web research framework. The central idea of ecological stoichiometry is that the mismatch between resource stoichiometry (elemental carbon:nitrogen:phosphorus ratio; C:N:P) and stoichiometric requirement of consumers hinders the carbon assimilation efficiency of consumers. Because high phytoplankton C:N and C:P ratios are disadvantageous to zooplankton growth, zooplankton would consume prey with preferred C:N:P ratio. In addition to stoichiometry, body size determines metabolic rates, and predator-prey mass ratio (PPMR, body size ratio of predator and its prey) determines food chain length in aquatic systems. Through lab-manipulated incubation experiments, stoichiometry and body size are found potential traits that influence trophic transfer efficiency and prey selection; however, evidence from in situ observations in natural aquatic food webs remains elusive. Furthermore, the interactions between body size and stoichiometry are rarely studied. Here, I examined (1) how prey stoichiometry (C:N:P ratio) influences zooplankton production, (2) how body size determines plankton stoichiometry, and (3) how nutrient and prey stoichiometry alter community PPMR in plankton grazing food webs, by in situ observations and theoretical modeling. I found that prey (phytoplankton) C:N and C:P ratios are indeed negatively correlated with zooplankton production in subtropical marine systems, indicating that N and P are essential to zooplankton. In both subtropical marine and freshwater grazing food webs, I found a unimodal C:N ratio pattern with respect to plankton body size: C:N ratio increases and reaches the maximum at 50 μm autotrophs, and then decreases with body size in heterotrophs. This pattern is explained by the accumulation of C through allometric resource affinity and respiratory C loss in my size-based food web model. The decreasing of C:N ratio with body size and heterotrophy suggests that predators prefer large prey and thus decrease PPMR when large size prey are sufficient; my field observations based on stable isotope analysis reveal that PPMR is smaller when nutrient supply is higher and supports more large prey. My research combining in situ observations and theoretical modeling point out that prey stoichiometry and size affect zooplankton production and modifies predation, indicating the important role of stoichiometry and allometry in trophic transfer efficiency in nature.
關鍵字(中) ★ 生態元素比
★ 體型
★ 異速增長
★ 次級生產率
★ 掠食者-獵物體型比
關鍵字(英) ★ ecological stoichiometry
★ body size
★ allometry
★ secondary production
★ predator-prey mass ratio
論文目次 Chapter 1: Introduction 1
References 8
Chapter 2: Prey stoichiometry influences growth rate and production of marine zooplankton 12
2-1. Introduction 13
2-2. Materials and methods 15
2-2-1. Estimation of in situ zooplankton GR and SP 15
2-2-2. Prey stoichiometry, biomass and PP estimates 16
2-2-3. Assessing phytoplankton and zooplankton compositions 16
2-2-4. Statistical analysis 17
2-3. Results 18
2-3-1. Does more prey N, P, and C biomass support higher GR (HI)? 18
2-3-2. Does SP decrease with prey C:N and C:P ratios (HII) and increase with PP (HIII)? 18
2-3-3. Is SP influenced by copepod and phytoplankton compositions (HIV)? 19
2-4. Discussion 19
Supplementary 2-1: Basic environmental conditions in the sampling areas 27
Supplementary 2-2: Procedure of in situ artificial cohort incubation and calculation of growth rates 35
Supplementary 2-3: Stoichiometry, GR and SP of copepod juvenile stages 37
Supplementary 2-4: Phytoplankton and copepod compositions 43
Chapter 3: Body size, light intensity and inorganic nutrient supply determine plankton stoichiometry in mixotrophic plankton food webs 53
3-1. Introduction 54
3-2. Material and methods 56
3-2-1. Size-fractionated C:N ratios of plankton in natural systems 56
3-2-2. Mixotrophic food web model 57
3-2-3. Statistical analysis 61
3-3. Results 61
3-3-1. Changes of C:N ratio along body size in freshwater and marine food webs 61
3-3-2. Simulated C:N ratio, cellular N and C influxes and trophic strategy along body size 62
3-3-3. C:N ratio changes with light intensity and inorganic N supply 63
3-4. Discussions 64
3-4-1. C:N ratio as a function of body size and light: nutrient supply 64
3-4-2. Deviation of simulated plankton C:N ratio from natural plankton 66
3-5. Conclusions 68
Supplementary 3-1 Autotrophy to heterotrophy transition with size and C:N ratio of mixotrophs under different light: inorganic nutrient supply 76
Supplementary 3-2 Sensitivity tests of the model 78
References 85
Chapter 4: Predator-prey body mass ratio of marine zooplankton is determined by quantity of basal resources 89
4-1. Introduction 90
4-2. Methods 91
4-2-1. Sampling area 91
4-2-2. Size-fractionated plankton sampling and stable isotope analysis 92
4-2-3. Statistical analysis 93
4-3. Results 93
4-3-1. Phytoplankton density and inorganic nutrient supply reduce community PPMR 93
4-3-2. Phytoplankton stoichiometry as a potential factor affecting community PPMR 93
4-4. Discussion 94
References 99
Chapter 5: Conclusions 102
References 105
參考文獻 1. Hessen DO, Elser JJ, Sterner RW, Urabe J (2013) "Ecological stoichiometry : An elementary approach using basic principles." Limnol Oceanogr 58(6):2219–2236.
2. Persson J, et al. (2010) "To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs." Oikos 119(5):741–751.
3. Dickman EM, Vanni MJ, Horgan MJ (2006) "Interactive effects of light and nutrients on phytoplankton stoichiometry." Oecologia 149(4):676–689.
4. Elser JJ, et al. (2000) "Nutritional constraints in terrestrial and freshwater food webs." Nature 408:578–580.
5. Denno RF, Fagan WF (2003) "Might nitrogen limitation promote omnivory among carnivorous arthropods?" Ecology 84(10):2522–2531.
6. Hessen DO (1990) "Carbon, nitrogen and phosphorus status in Daphnia at varying food conditions." J Plankton Res 12(6):1239–1249.
7. Jensen TC, Anderson TR, Daufresne M, Hessen DO (2006) "Does excess carbon affect respiration of the rotifer Brachionus calyciflorus Pallas?" Freshw Biol 51(12):2320–2333.
8. Jensen TC, Hessen DO (2007) "Does excess dietary carbon affect respiration of Daphnia?" Oecologia 152(2):191–200.
9. Darchambeau F, Faerøvig PJ, Hessen DO (2003) "How Daphnia copes with excess carbon in its food." Oecologia 136(3):336–346.
10. Sterner RW, Elser JJ (2002) Ecological stoichiometry : the biology of elements from molecules to the biosphere (Princeton University Press, Princeton, NJ).
11. Zhang C, Jansen M, De Meester L, Stoks R (2016) "Energy storage and fecundity explain deviations from ecological stoichiometry predictions under global warming and size-selective predation." J Anim Ecol 85(6):1431–1441.
12. Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ (2004) "Fundamental connections among organism C : N : P Stoichiometetry, macromolecular composition, and growth." Ecology 85(5):1217–1229.
13. Elser JJ, et al. (2003) "Growth rate – stoichiometry couplings in diverse biota." Ecol Lett 6:936–943.
14. Moreno AR, Martiny AC (2018) "Ecological stoichiometry of ocean plankton." Ann Rev Mar Sci 10(1):43–69.
15. Acharya K, Kyle M, Elser JJ (2004) "Biological stoichiometry of Daphnia growth: An ecophysiological test of the growth rate hypothesis." Limnol Oceanogr 49(3):656–665.
16. Main TM, Dobberfuhl DR, Elser JJ (1997) "N : P stoichiometry and ontogeny of crustacean zooplankton: A test of the growth rate hypothesis." Limnol Oceanogr 42(6):1474–1478.
17. Carrillo P, Villar-Argaiz M, Medina-Sánchez JM (2001) "Relationship between N : P ratio and growth rate during the life cycle of calanoid copepods: An in situ measurement." J Plankton Res 23(5):537–547.
18. Cebrian J, et al. (2009) "Producer nutritional quality controls ecosystem trophic structure." PLoS One 4(3):1–5.
19. Longhurst A (1984) "Importance of measuring rates and fluxes in marine ecosystems." Flows of Energy and Materials in Marine Ecosystems: Theory and Practice, ed Fasham MJR (Springer US, Boston, MA), pp 3–22.
20. Katechakis A, Haseneder T, Kling R, Stibor H (2005) "Mixotrophic versus photoautotrophic specialist algae as food for zooplankton: The light: nutrient hypothesis might not hold for mixotrophs." Limnol Oceanogr 50(4):1290–1299.
21. Andersen KH, et al. (2016) "Characteristic sizes of life in the oceans , from bacteria to whales." Ann Rev Mar Sci 8:217–243.
22. Hansen B, Bjørnsen PK, Hansen PJ (1994) "The size ratio between planktonic predators and their prey." Limnol Oceanogr 39(2):395–403.
23. Ward BA, Follows MJ (2016) "Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux." Proc Natl Acad Sci USA 113(11):2958–2963.
24. Fuchs HL, Franks PJS (2010) "Plankton community properties determined by nutrients and size-selective feeding." Mar Ecol Prog Ser 413:1–15.
25. Ciotti AM, Lewis MR, Cullen JJ (2002) "Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient." Limnol Oceanogr 47(2):404–417.
26. Poulin FJ, Franks PJ (2010) "Size-structured planktonic ecosystems: constraints, controls and assembly instructions." J Plankton Res 32(8):1121–1130.
27. Moorthi SD, et al. (2016) "Unifying ecological stoichiometry and metabolic theory to predict production and trophic transfer in a marine planktonic food web." Philos Trans R Soc (part B) 371:1–10.
28. Finkel Z V, Irwin AJ, Schofield O (2004) "Resource limitation alters the 3 ⁄ 4 size scaling of metabolic rates in phytoplankton." Mar Ecol Prog Ser 273:269–279.
29. Fenchel T (2014) "Respiration in heterotrophic unicellular eukaryotic organisms." Protist 165(4):485–492.
30. Banse K (1976) "Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size—a review." J Phycol 12(2):135–140.
31. Lewis Jr. WM (1989) "Further evidence for anomalous size scaling of respiration in phytoplankton." J Phycol 397:395–397.
32. Tang EP, Peters RH (1995) "The allometry of algal growth rates." J Plankton Res 17(6):303–315.
33. Glazier DS (2009) "Metabolic level and size scaling of rates of respiration and growth in unicellular organisms." Funct Ecol 23:963–968.
34. West G, Brown JH, Enquist BJ (1997) "A general model for the origin of allometric scaling laws in biology." Science 276:122–126.
35. West GB, West GB, Brown JH, Enquist BJ (1999) "The fourth dimension of life : fractal geometry and allometric scaling of organisms." Science 284:1677–1679.
36. Glazier DS (2010) "A unifying explanation for diverse metabolic scaling in animals and plants." Biol Rev 85(1):111–138.
37. Glazier DS, Hirst AG, Atkinson D (2015) "Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates." Proc R Soc B-Biological Sci 282(1802):1–9.
38. Moloney CL (1989) "General allometric equations for rates of nutrient uptake, ingestion, and respiration in plankton organisms." Limnol Oceanogr 34(7):1290–1299.
39. Glazier DS (2006) "The 3/4-power law is not universal: evolution of isometric, ontogenetic metabolic scaling in pelagic animals." Bioscience 56(4):325–332.
40. Jeyasingh PD (2007) "Plasticity in metabolic allometry : the role of dietary stoichiometry." Ecol Lett 10:282–289.
41. Kiørboe T, Hirst AG (2014) "Shifts in mass scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms." Am Nat 183(4):E118–E130.
42. Fenchel T (1974) "Intrinsic rate of natural increase : the relationship with body size." Oecologia 14:317–326.
43. Hendriks AJ (1999) "Allometric scaling of rate , age and density parameters in ecological models." Oikos 86(2):293–310.
44. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) "Toward a metabolic theory of ecology." Ecology 85(7):1771–1789.
指導教授 謝志豪 錢樺 夏復國(Chih-hao Hsieh Hwa Chien Fuh-Kwo Shiah) 審核日期 2018-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明