博碩士論文 103523012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:134 、訪客IP:3.145.95.133
姓名 吳承哲(WU,CHENG-TSE)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 利用壓縮感知法消除多輸入輸出電力線傳輸之脈衝雜訊
(Impulsive Noise Mitigation with Compressive Sensing for MIMO Power Line Communication)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 基於數位單脈衝接收機與質點演算法之無人機追蹤效能分析
★ 基於輔助波束對之UAV追蹤方法實現★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電力線通訊(powerline communications, PLC) 最近研究採用多輸入多輸出(Multiple-input Multiple-output, MIMO) 的正交分頻多工(orthogonal frequencydivisionmultiplexing, OFDM) 系統,以改善過去在實體層(physical layer) 資料傳輸效能不足的問題,然而電力線系統除了存在可加性白高斯雜訊(Additive White Gaussian Noise, AWGN) 之外,還會產生具有高能量的脈衝雜訊(impulsive noise,IN),導致系統的效能嚴重傷害。
有別於過去一些傳統的脈衝雜訊消除法,在本論文中我們使用一個名為壓縮感知(compressive sensing, CS) 的演算法來估計PLC 測脈衝雜訊的能量及其在傳送過程中發生的時機點後將其進行濾除的動作,為了證明CS 演算法的有效性,我們針對不同狀況下的脈衝雜訊做模擬分析,並搭配後續的通道估測及MIMO解調器,驗證系統的位元錯誤率(bit-error rate, BER) 在相同SNR 下能與無脈衝
雜訊時的性能相近。
摘要(英) Powerline communications(PLC) has been recently studied to apply the multipleinput
multiple-output(MIMO)orthogonal frequency-division multiplexing (OFDM) technology
in order to solve the problem of insufficient data transmission rate on the physical
layer. However, the powerline system not only has the additive white Gaussian
noise(AWGN), but also has high energy of impulsive noise(IN) that can do serious damage
to the performance of the PLC system.
Very different from some traditional impulsive noise elimination methods in the past,
we develop an algorithm called compressive sensing(CS) in this thesis to estimate the
energy of the impulsive noise and its presence position in the process of transmission
and then filter it out. In order to show the effectiveness of the proposed algorithm, we
simulate the MIMO PLC transmission with the impulsive noise in the different environments.
Together with the MIMO channel estimation and different MIMO detection
methods, we can see that the bit-error rate(BER) performance of the proposed algorithm
can approach the case without the impulsive noise at the same SNR.
關鍵字(中) ★ 電力線通訊
★ 脈衝雜訊
★ 壓縮感知
關鍵字(英) ★ powerline communication
★ impulsive noise
★ compressive sensing
論文目次 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
第1 章序論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 章節架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
第2 章System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 PLC 規格介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 調變方式及載波設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 功率分配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 MIMO precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 OFDM 傳送端流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 OFDM 接收端流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 PLC 上的MIMO 通道模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 脈衝雜訊的產生及模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
第3 章消除脈衝雜訊以及解調MIMO 訊號. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 非線性預處理器消除脈衝雜訊. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 以Compressive Sensing 法消除IN . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Compressive Sensing 演算法的介紹. . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Compressive Sensing 法之IN 消除. . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 通道估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 MIMO-Detector 訊號偵測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 回授通道資訊給傳送端做MIMO precoding . . . . . . . . . . . . . . . . . 29
3.4.2 OSIC 偵測法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
第4 章系統模擬與結果分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 模擬環境說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 通道估計性能比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 ? = 0:001 時非線性預處理器的門檻. . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 ? = 10?5 時非線性預處理器的門檻. . . . . . . . . . . . . . . . . . . . . . . 48
4.3 precoding 架構下不同IN 消除法之BER . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 使用CS 法時不同MIMO detector 之BER 差別. . . . . . . . . . . . . . . . . 60
4.5 使用CS 法脈衝雜訊的最大出現機率. . . . . . . . . . . . . . . . . . . . . . . . . 66
第5 章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
參考文獻 [1] Y. Wu and W. Y. Zou, “Orthogonal frequency division multiplexing: a multicarrier
modulation scheme,” IEEE Transactions on Consumer Electronics, vol. 41,
no. 3, pp. 392–399, Aug 1995.
[2] R. v. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, 1st ed.
Norwood, MA, USA: Artech House, Inc., 2000.
[3] OFDM for Wireless Communications Systems. Norwood, MA, USA: Artech
House, Inc., 2004.
[4] D. F. Tseng, R. B. Yang, T. R. Tsai, Y. S. Han, and W. H. Mow, “Efficient clipping
for broadband power line systems in impulsive noise environment,” in 2012 IEEE
International Symposium on Power Line Communications and Its Applications,
March 2012, pp. 362–367.
[5] H. Meng, Y. L. Guan, and S. Chen, “Modeling and analysis of noise effects on
broadband power-line communications,” IEEE Transactions on Power Delivery,
vol. 20, no. 2, pp. 630–637, April 2005.
[6] L. Stadelmeier, D. Schill, A. Schwager, D. Schneider, and J. Speidel, “Mimo
for inhome power line communications,” in 7th International ITG Conference on
Source and Channel Coding, Jan 2008, pp. 1–6.
[7] L. T. Berger, A. Schwager, P. Pagani, and D. M. Schneider, “Mimo power line
communications,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp.
106–124, Firstquarter 2015.
[8] H. A. Latchman, S. Katar, L. Yonge, and S. Gavette, Appendix B: HomePlug
AV Parameter Specification. Wiley-IEEE Press, 2013, pp. 384–. [Online].
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6629431
[9] L. YONGE, J. ABAD, K. AFKHAMIE, L. Guerrieri, S. KATAR, H. LIOE,
P. PAGANI, R. RIVA, D. M. SCHNEIDER, and A. SCHWAGER, “HomePlug
AV2: Next-Generation Broadband over Power Line,” in MIMO power line
communications : narrow and broadband standards, EMC, and advanced
processing, ser. Devices, Circuits, and Systems. CRC Press, 2014, pp. 391 –
426. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01066347
[10] H. Latchman, S. Katar, L. Yonge, and A. Amarsingh, “High speed multimedia
and smart energy plc applications based on adaptations of homeplug av,” in 2013
IEEE 17th International Symposium on Power Line Communications and Its Applications,
March 2013, pp. 143–148.
[11] M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in
broad-band powerline communications,” IEEE Transactions on Electromagnetic
Compatibility, vol. 44, no. 1, pp. 249–258, Feb 2002.
[12] G. Ndo, P. Siohan, and M. H. Hamon, “Adaptive noise mitigation in impulsive
environment: Application to power-line communications,” IEEE Transactions on
Power Delivery, vol. 25, no. 2, pp. 647–656, April 2010.
[13] J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, “On
channel estimation in ofdm systems,” in 1995 IEEE 45th Vehicular Technology
Conference. Countdown to the Wireless Twenty-First Century, vol. 2, Jul 1995,
pp. 815–819 vol.2.
[14] D. Bueche, P. Corlay, M. Gazalet, and F. X. Coudoux, “A method for analyzing
the performance of comb-type pilot-aided channel estimation in power line communications,”
IEEE Transactions on Consumer Electronics, vol. 54, no. 3, pp.
1074–1081, August 2008.
[15] M. Ghosh, “Analysis of the effect of impulse noise on multicarrier and single carrier
qam systems,” IEEE Transactions on Communications, vol. 44, no. 2, pp.
145–147, Feb 1996.
[16] F. H. Juwono, Q. Guo, D. Huang, and K. P. Wong, “Deep clipping for impulsive
noise mitigation in ofdm-based power-line communications,” IEEE Transactions
on Power Delivery, vol. 29, no. 3, pp. 1335–1343, June 2014.
[17] V. N. Papilaya and A. J. H. Vinck, “Investigation on a new combined impulsive
noise mitigation scheme for ofdm transmission,” in 2013 IEEE 17th International
Symposium on Power Line Communications and Its Applications, March 2013, pp.
86–91.
[18] K. M. Rabie and E. Alsusa, “Preprocessing-based impulsive noise reduction for
power-line communications,” IEEE Transactions on Power Delivery, vol. 29,
no. 4, pp. 1648–1658, Aug 2014.
[19] S. V. Zhidkov, “Performance analysis and optimization of ofdm receiver with
blanking nonlinearity in impulsive noise environment,” IEEE Transactions on Vehicular
Technology, vol. 55, no. 1, pp. 234–242, Jan 2006.
[20] ——, “Analysis and comparison of several simple impulsive noise mitigation
schemes for ofdm receivers,” IEEE Transactions on Communications, vol. 56,
no. 1, pp. 5–9, January 2008.
[21] G. Caire, T. Y. Al-Naffouri, and A. K. Narayanan, “Impulse noise cancellation in
ofdm: an application of compressed sensing,” in 2008 IEEE International Symposium
on Information Theory, July 2008, pp. 1293–1297.
[22] W. Ding, Y. Lu, F. Yang, W. Dai, P. Li, S. Liu, and J. Song, “Spectrally efficient
csi acquisition for power line communications: A bayesian compressive sensing
perspective,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 7,
pp. 2022–2032, July 2016.
[23] A. Mehboob, L. Zhang, and J. Khangosstar, “Adaptive impulsive noise mitigation
using multi mode compressive sensing for powerline communications,” in 2012
IEEE International Symposium on Power Line Communications and Its Applications,
March 2012, pp. 368–373.
[24] S. Liu, F. Yang, W. Ding, J. Song, and Z. Han, “Impulsive noise cancellation for
mimo-ofdm plc systems: A structured compressed sensing perspective,” in 2016
IEEE Global Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.
[25] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal
designs for space-time linear precoders and decoders,” IEEE Transactions on
Signal Processing, vol. 50, no. 5, pp. 1051–1064, May 2002.
[26] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An
overview of limited feedback in wireless communication systems,” IEEE Journal
on Selected Areas in Communications, vol. 26, no. 8, pp. 1341–1365, October
2008.
[27] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-blast:
an architecture for realizing very high data rates over the rich-scattering wireless
channel,” in 1998 URSI International Symposium on Signals, Systems, and Electronics.
Conference Proceedings (Cat. No.98EX167), Sep 1998, pp. 295–300.
[28] G. D. Golden, C. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, “Detection
algorithm and initial laboratory results using v-blast space-time communication
architecture,” Electronics Letters, vol. 35, no. 1, pp. 14–16, Jan 1999.
[29] L. Yonge, J. Abad, K. Afkhamie, L. Guerrieri, S. Katar, H. Lioe, P. Pagani,
R. Riva, D. M. Schneider, and A. Schwager, “An overview of the homeplug av2
technology,” Journal of Electrical and Computer Engineering, vol. 2013, p. 20,
2013. [Online]. Available: http://dx.doi.org/10.1155/2013/892628
[30] A. Nayagam, S. Katar, D. Rende, K. Afkhamie, and L. Yonge, “Tradeoff between
channel estimation accuracy and application throughput for in-home mimo power
line communication,” in 2011 IEEE International Symposium on Power Line Communications
and Its Applications, April 2011, pp. 411–417.
[31] M. Zimmermann and K. Dostert, “A multipath model for the powerline channel,”
IEEE Transactions on Communications, vol. 50, no. 4, pp. 553–559, Apr 2002.
[32] T. Shongwey, A. J. H. Vinck, and H. C. Ferreira, “On impulse noise and its models,”
in 18th IEEE International Symposium on Power Line Communications and
Its Applications, March 2014, pp. 12–17.
[33] E. C and J. Romberg, “?1-magic: Recovery of sparse signals via convex programming,”
2005.
[34] E. J. Candes and P. A. Randall, “Highly robust error correction byconvex programming,”
IEEE Transactions on Information Theory, vol. 54, no. 7, pp. 2829–2840,
July 2008.
指導教授 張大中(Dah-Chung Chang) 審核日期 2018-5-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明