博碩士論文 105523053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:158 、訪客IP:3.139.90.131
姓名 莊雅鈴(Ya-Ling Chuang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 適用於LTE-A扇面搜尋機制之主同步序列特性研
(Characterization of the Primary Synchronization Signal for Sector Search Process in LTE-A Communications)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) LTE-A ( Long Term Evolution-Advanced ) 系統下行採用 OFDMA系統,使用主要同步訊 號( primary synchronization signal )和次要同步訊號 和次要同步訊號 ( second synchronization signal )來進行同步 ( synchronization )和扇面搜尋 ( sector search )/蜂巢搜尋 (cell search),其中,主要同步訊號在 ,其中主要同步訊號在 LTE-A中採取 Zadoff-Chu序列進行同步。然而 Zadoff-Chu序列在時間延遲和頻率偏移存下, 序列在時間延遲和頻率偏移存下, 會產生極大的旁辦 ( side-lobe ),造成其同步性能不佳,故在本篇論文中挑選數 ,造成其同步性能不佳故在本篇論文中挑選數 個序列 如 CCK(Complementary Code Keying)、格雷互補碼 、格雷互補碼 (Golay Complementary Sequence)、Frank、最 大長度序列 (Maximum Length Sequence)與之比較並研究序列特性。本篇論文在扇面搜尋過程 與之比較並研究序列特性。本篇論文在扇面搜尋過程 進行以下步驟 :第一步,將訊框延遲半個做自相關找出時序 (frame timing),第二步, , 第二步將此訊框做小數點頻率估測,第三步利用同號來偵區段 (sector)和整數頻率偏移,最 後一步,則可確認扇面。
本篇論文在 Rayleigh環境 下討論序列特性,利用匹配濾波器來確認區段和蜂巢身分並 下討論序列特性,利用匹配濾波器來確認區段和蜂巢身分並 和原本的 Zadoff-Chu序
摘要(英) LTE-A (Long Term Evolution-Advanced) downlink uses OFDMA. This system uses the primary synchronization signal (P-SCH) and second synchronization signal (S-SCH) for synchronization and sector search/cell search. Among them, P-SCH uses Zadoff-Chu sequence to complete the synchronization work in LTE-A. However, Zadoff-Chu sequence will generate very large side-lobe and it will let its synchronization efficacy become worse if there exists time delay and frequency offset. Hence in this thesis, we pick several sequence for example, CCK, Golay Complementary Sequence, Frank and m-sequence to compare each other to discuss their sequence properties. Sector search in this paper contains following steps: First, using the delay frame to auto-correlate and to find the frame timing. Next, using this frame to do fraction frequency offset estimation. Third, using synchronization signal to estimate the sector and integer frequency offset. And in the end, we can confirm the sector.
In this thesis, we discuss the sequence properties in Rayleigh channel. Use matched filter to confirm sector and cell identities, and we compare with Zadoff-Chu sequence in original system. Find out the sequence with better performance.
關鍵字(中) ★ 同步
★ 扇面搜尋
關鍵字(英) ★ synchronization, sector search
★ Zadoff-Chu
★ CCK
★ Golay
★ Frank
★ m-sequence
論文目次 目錄
目錄 .................... iii
圖目錄 ................... v
表目錄 ................... vii
第一章 序論................. 1
1.1簡介 .................... 1
1.2 研究動機 ................ 2
第二章 OFDM系統介紹.................. 3
2.1 正交分頻多工介紹 ......... ......... 3
2.1.1干擾對 OFDM系統的影響 ..................... 5
2.2 模糊函數 Ambiguity Function ................. 6
2.3 同步訊號 .......................... 7
2.3.1 主要同步訊號............ .... 8
2.3.2 次要同步訊號 ................. .. 14
第三章 扇面 搜尋過程 ....... 15
3.1 訊框時序估測 .............. .............. 16
3.2 以 ML法做小數點頻率偏移估測............ 17
3.3 扇面 與整數頻率偏移估測......................... 19
第四章 各序列在 Rayleigh環境下相關性比較........................... 22
4.1互補碼 (Complementary Code Keying, CCK) ..... 22
4.1.1 5.5M bit/s ................... ........... 22
4.1.2 11M bit/s .................. ............ 23
4.2格雷互補碼 ( Golay Complementary Code) ........27
4.3 Frank Code ............ .................... 30
4.4 最大長度序列 (Maximum length sequence, m-sequence) ......................... ........ 33
4.4.1 m序列互相關特性 ........................... 34
第五章 Rayleigh多重路徑衰落環境下序列特性研究........... 37
5.1 訊框時序估測................. ............. 37
5.2 小數部份頻率偏移 .......................... ..... 38
5.3整數部份頻率偏移 ..................... ....... 39
5.4扇面身分辨識 .... ............... 40
第六章 結論 .................. 41
參考文獻 參考文獻 .............................. 42
參考文獻 參考文獻
[1] 3GPP TS 36.211, “Physical channels and modulation,” V9.1.0 Release 9, April 2010.
[2] 3GPP TSG-RAN WG1 #88 R1-1702822, “Discussion and evaluation on NR-PSS/SSS structure,” NTT DOCOMO, INC, 13th-17th, Feb. 2017.
[3] 3GPP TSG-RAN WG1 #88 R1-1702123, “Synchronization signal sequence design,” Ericsson, 13th-17th, Feb. 2017.
[4] B.Shoba and K. Jayanthi, “Low complex primary and secondary synchronization signal structure design for LTE systems,” IEEE 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), pp.467-470, 13 June 2016.
[5] C.-B. Huang, “Cell search procedure based on partial correlated joint detection in 3GPP LTE downlink system,” Institute of Computer and Communication Engineering, National Taipei University of Technology, July 2011.
[6] S. S. Prasad, C. K. Shukla and R. F. Chisab, “Performance analysis of OFDMA in LTE,” IEEE 2012 3rd International Conference on Computing Communication and Networking Technology Technologies (ICCNT), 31 Dec. 2012.
[7] B.-J. Tsao, Cell Search for 3GPP LTE Communication System, Department of Communication Engineering, National Central University, June 2010.
[8] N. Levanon and E. Mozeson, Radar Signals, Wiley-IEEE press, July 2004.
[9] 3GPP TSG RAN WG1 #88 R1-1702826,” Discussion and evaluation on NR synchronization signal sequence design,” NTT DOCOMO, INC, Feb. 13th-17th 2017.
[10] 3GPP TSG RAN WG1 #88 R1-1702061, “Numerology agnostic NR PSS Design,” CATT, 13th-17th, Feb. 2017.
[11] I. Kim, Y. Han and H. K. Chung, “An efficient synchronization signal structure for OFDM-based cellular systems,” IEEE Trans. on Wire. Communi., vol. 9, no. 1, Jan. 2010.
[12] I. Kim, Y. Han and Y. Kim, “Sequence hopping cell search scheme for OFDM cellular systems,” IEEE Trans. on Wirel. Communi., vol. 7, no. 5, pp.1483-1489, May 2008.
[13] K. Manolakis, D. M. Gutierrez Estevez, V. J. Wen Xu and Christian Drewes, “A closed concept for synchronization and cell search in 3GPP LTE systems,” IEEE Wireless Communications and Networking Conference, pp. 1-6, May 12 2009.
[14] 3GPP TSG-RAN1 #88 R1-173093, “Synchronization signal design and performance analysis,” Nokia, Alcatel-Lucent Shanghai Bell, 13th-17th, Feb. 2017.
[15] Y.-H. Tsai and T.-H. Sang, “A new timing synchronization and cell search procedure resistant to carrier frequency offsets for 3GPP-LTE downlink,” IEEE International Conference on Communications in China, pp. 334-338, 26 Nov. 2012.
[16] Y.-H. Tsai, A new timing synchronization algorithm in cell search for 3GPP LTE downlink, Department of Electronics Engineering and Institute of Electronics College of Electrical and Computer Engineering, National Chiao Tung University, Feb. 2011.
[17] PVND Prasad, Dr. K. PadmaRaju and S. Poornima Poojitha, “LTE physical layer DL simulator and PSS detection algorithm evaluation using the LTE DL simulator,” ISSN, International Journal of Engineering Research, no. 3, pp. 688-691, Nov. 2014.
[18] N. M Gowda and S. Ramanath, “Robust synchronization-signal detection for cell identification in 3GPP LTE and LTE-Advanced receivers,” IEEE 7th International Conference on Communication Systems and Networks (COMSNETS), pp. 1-6, 4 May 2015.
[19] 3GPP TSG RAN WG1 #88 R1-1703352, Synchronization signals for NR, Huawei, HiSilicon, Feb. 13th-17th 2017.
[20] H.-S. Ke, Time and frequency synchronization and cell search in 3GPP LTE, Institute of Communications Engineering National Sun Yat-sen University Master Thesis, July 2011.
[21] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, Inc. Norwood, MA, USA, 2000.
[22] J.-J. Beek, M. Sandell and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. on Signal Process., vol. 45, no. 7, pp. 1800-1805, July 1997.
[23] J. Mikulka and S. Hanus, “Complementary code keying implementation in the wireless networking,” IEEE, pp.315-318, 12 Nov. 2007.
[24] M. B. Pursley and T. C. Royster IV, “Bit and symbol error rates for complementary code key modulation with alternative bit mappings,” IEEE Communications Letters, vol. 12, no. 11, pp.804-806, Nov. 2008.
[25] M. B. Pursley and T. C. Royster IV, “Properties and performance of the IEEE 802.11b complementary-code-key signal sets,” IEEE Trans. on Communi., vol. 57, no. 2, pp.440-449, Feb. 2009.
[26] Z. HA Yanfang, B. Jian, B. Xiaoxiao and Y. Kuixi, “Research and realization of CCK modulation and demodulation based on cyclone III,” Modern Electronic Technology, no.TN911, journal15.302, 2009.
[27] A. Z. Al-Banna, T.-R. Lee, J. L. LoCicero and D. R. Ucci, “11 Mbps CCK - Modulated 802.llb Wi-Fi: Spectral signature and interference,” IEEE International Conference on Electro/information Techonology, Dec. 04 2006
[28] M. G. Parker, K. G. Paterson and C. Tellambura, “Golay complementary sequences,” Information Security Group, 19 Jan. 2004.
[29] C.-T. Chen., Y. Li and S.-J. Yang, “Golay and Zadoff-Chu Sequences in LTE Synchronization,” IEEE Vehicular Technology Society Asia Pacific Wireless Communications Symposium, Aug. 2014.
[30] J.-C. Lin, Y.-T. Sun and H. V. Poor, “Initial synchronization exploiting inherent diversity for LTE sector search process,” IEEE Trans. Wirel. Commun., vol. 15, no. 2, pp. 1114-1128, Feb. 2016.
[31] J.-C. Lin, “Synchronization requirements for 5G,” IEEE vehic. Tech., Sept. 2018.
[32] J.-C. Lin, “Coarse frequency offset acquisition via subcarrier differential detection for OFDM communications,” IEEE Trans. Commun., vol. 54, no. 8, pp. 1415-1426, Aug. 2006.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2018-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明