博碩士論文 105523034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.145.105.149
姓名 林子勻(Tzu-Yun Lin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 相差空間調變的改良設計
(Improved Designs of Differential Spatial Modulation)
相關論文
★ 全像光資訊儲存系統的編解碼★ 具有快速改變載波相位之籬柵編碼MPSK 的非同調解碼
★ 用於非同調解碼之多層次編碼調變★ 么正空間時間籬柵碼之解碼演算法
★ 由多層次編碼所架構之非同調碼★ 用於非同調檢測之與空時區塊碼連結的區塊編碼調變
★ 用於正交分頻多工系統具延遲處理器的空時碼★ 用於非同調區塊編碼MPSK之A*解碼演算法
★ 在塊狀衰退通道上的籬柵么正空時調變★ 用於非同調區塊編碼MPSK之Chase演算法
★ 使用決定回授檢測之相差空時調變的 一種趨近同調特性★ 具延遲處理器的空時碼之軟式輸入輸出遞迴解碼
★ 用於非同調區塊編碼MPSK的最大可能性解碼演算法★ 具頻寬效益之非同調調變
★ 非同調空時渦輪碼★ 循環字首及補零正交分頻多工系統經預編碼後之頻譜比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相差空間調變是一種一次只使用一根天線傳送訊號的多天線技術,藉由選擇傳送天線可以多傳額外的資料位元,並避免前導(pilot)訊號的浪費。傳統相差空間調變極其複雜,本論文的目標是降低相差空間調變的複雜度。在傳統相差空間調變中,非同調最大可能性檢測的複雜度和傳送天線的數量成指數關係,在本論文中,提出一種新的非同調最大可能性檢測,其複雜度大致是和傳送天線數量成正比。另一方面,由於現有的複數值天線索引矩陣會造成傳送訊號的星座圖有極其多個訊號點,我們也提出了一個系統化複數值天線索引矩陣的設計,使傳送訊號星座圖只有少數個訊號點。而我們所提出的這兩種技術在沒有犧牲錯誤效能的情況下都減少了複雜度。
在最近一篇論文中,提出一種使用在下行大規模傳送天線系統的相差空間調變,本論文也指出它在同一根天線所連續傳送的訊號相距時間可能會太遠,導致在連續改變的衰退通道有不理想的錯誤率,因此我們提出修正的做法,並改善錯誤蔓延的問題,電腦模擬結果也顯示出在連續改變的衰退通道下,我們提出的做法有更好的錯誤效能。
摘要(英) Differential spatial modulation (DSM) is a multi-antenna technique that uses only one antenna to transmit signals at a time and avoids pilot overhead. By selecting the transmitting antenna, additional data bits can be transmitted. The conventional DSM is extremely complex. We aim to reduce the complexity of DSM in this thesis. The complexity of noncoherent maximum-likelihood (ML) detector of conventional DSM increases exponentially with the number of transmitter antennas. In this thesis, we propose a new ML detector whose complexity is roughly in proportional to the number of transmitter antennas. On the other hand, since the complex-valued antenna-index matrices causes the constellation of the transmitted signal has unlimited points, we have also proposed a systematically designed complex-valued antenna index matrices so that the transmitted signal constellation has a few signals points only. Both the proposed techniques decrease the complexity without sacrificing error performance.
In a recent paper, DSM used in downlink large-scale transmission antenna systems was proposed. This thesis also points out that it may be too far away from the signal continuously transmitted by the same antenna, resulting in bad error performance for time-varying fading channels. Therefore, we propose a method which has a better error performance in time-varying fading channels.
關鍵字(中) ★ 相差空間調變
★ 非同調最大可能性檢測
★ 天線索引矩陣
關鍵字(英) ★ Differential Spatial Modulation
★ noncoherent maximum-likelihood detector
★ antenna index matrices
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 背景與研究動機 1
1.2 內容介紹 3
第二章 相關背景回顧 4
2.1相差空間調變 4
2.2 APSK相差空間調變[24] 6
第三章 大規模傳送天線的相差空間調變 8
3.1 回顧論文[20]的系統架構 8
3.1.1 論文[20]的傳送端 8
3.1.2 論文[20]的接收端 10
3.2 改變論文[20]的傳送端及接收端做法 12
3.3 週期性的傳送天線 16
第四章 設計複數空時矩陣 18
4.1 提出的最大可能性檢測器 18
4.2 複數天線索引矩陣的系統化設計 22
4.2.1 論文[20]天線索引矩陣比較 22
4.2.2 系統化的天線索引矩陣 25
4.2.3 不同θ的錯誤率 29
4.3 非單一傳送多樣性的設計 30
第五章 結論 32
參考文獻 33
參考文獻 [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
[3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for MIMO channels,” IEEE Trans. Wireless Commun.,vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
[4] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
[5] S. Sugiura, S. Chen, and L. Hanzo, “A universal space-time architecture for multiple-antenna aided systems,” IEEE Commun. Surveys & Tutorials,vol. 14, no. 2, pp. 401–420, May 2012.
[6] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter 2015.
[7] M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges, deployment and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201-1220, Jun. 2017.
[8] S. Sugiura, S. Chen, and L. Hanzo, “Coherent and differential spacetime shift keying: A dispersion matrix approach,” IEEE Trans. Commun.,vol. 58, no. 11, pp. 3219–3230, Nov. 2010.
[9] S. Sugiura, S. Chen, H. Haas, P.M. Grant, and L. Hanzo, “Coherent versus non-coherent decode-and-forward relaying aided cooperative space-time shift keying,” IEEE Trans. Commun., vol. 59, no. 6, pp. 1707–1719, Jun. 2011.
[10] S. Sugiura and L. Hanzo, “Effects of channel estimation on spatial modulation,” IEEE Signal Process. Lett., vol. 19, no. 12, pp. 805–808, Dec. 2012.
[11] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao, “Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 7, pp. 3262–3268, Jul. 2015.
[12] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337–340, Aug. 2014.
[13] W. Zhang, Q. Yin, and H. Deng, “Differential full diversity spatial modulation and its performance analysis with two transmit antennas,” IEEE Commun. Lett., vol. 19, no. 4, pp. 677–680, Apr. 2015.
[14] P. A. Martin, “Differential spatial modulation for APSK in time-varying fading channels,” IEEE Commun. Lett., vol. 19, no. 7, pp. 1261–1264, Jul. 2015.
[15] M. Wen, X. Cheng, Y. Bian, and H. V. Poor, “A low-complexity near-ML differential spatial modulation detector,” IEEE Signal Proc. Lett., vol. 22, no. 11, pp. 1834–1838, Nov. 2015.
[16] J. Li, M. Wen, X. Cheng, Y. Yan, S. Song, and M. H. Lee, “Differential spatial modulation with Gray coded antenna activation order,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1100–1103, Jun. 2016.
[17] M. Zhang, M. Wen, X. Cheng, and L. Yang, “A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation,” IEEE Trans.Wireless Commun., vol. 15, no. 9, pp. 6356–6370, Sep. 2016.
[18] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo,“Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
[19] J. Liu, L. Dan, P. Yang, L. Xiao, F. Yu, and Y. Xiao, “High-rate APSK-aided differential spatial modulation: Design method and performance analysis,” IEEE Commun. Lett., vol. 21, no. 1, pp. 168–171, Jan. 2017.
[20] N. Ishikawa and S. Sugiura, “Rectangular differential spatial modulation for open-loop noncoherent massive-MIMO downlink,” IEEE Wireless Commun. Lett., vol. 16, no. 3, pp. 1908–1920, Mar. 2017.
[21] R. Rajashekar, C. Xu, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, “Algebraic differential spatial modulation is capable of approaching the performance of its coherent counterpart,” IEEE Wireless Commun. Lett., vol. 65, no. 10, pp. 4260–4272, Oct. 2017.
[22] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
[23] V. Tarokh, N. Seshadri and A.R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
[24] P. A. Martin, “Differential Spatial Modulation for APSK in Time-Varying Fading Channels,” IEEE Commun. Lett., vol. 19, pp. 168-171, Jul. 2015.
[25] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 2567-2578, no. 7, Nov. 2000.
[26] L. Xiao, P. Yang, X. Lei, Y. Xiao, S. Fan, S. Li, and W. Xiang “A low complexity detection scheme for differential spatial modulation,” IEEE Commun. Lett., vol. 19, no. 9, pp. 1516-1519, Sep. 2015.
[27] M. Wen, X. Cheng, Y. Bian, and H. V. Poor, “A low-complexity near-ML differential spatial modulation detector,” IEEE Signal Proc. Lett., vol. 22, no. 11, pp. 1834-1838, Nov. 2015.
[28] Z Li, X. Cheng, S. Han, M. Wen, L. Yang, and B. Jiao, “A low complexity optimal sphere decoder for differential spatial modulation,”2015 IEEE Global Communications Conference (Globecom), San Diego, CA, 2015.
指導教授 魏瑞益(Ruey-Yi Wei) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明