博碩士論文 105523033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.138.126.23
姓名 黃靖雅(Jing-Ya Huang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於摺積神經網路於 H.266/FVC 視訊編碼畫面內模式預測
(Intra Mode Prediction for H.266/FVC Video Coding based on CNNs)
相關論文
★ 基於區域權重之衛星影像超解析技術★ 延伸曝光曲線線性特性之調適性高動態範圍影像融合演算法
★ 實現於RISC架構之H.264視訊編碼複雜度控制★ 基於卷積遞迴神經網路之構音異常評估技術
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 基於時序卷積網路之單FMCW雷達應用於非接觸式即時生命特徵監控
★ 視訊隨選網路上的視訊訊務描述與管理★ 基於線性預測編碼及音框基頻週期同步之高品質語音變換技術
★ 基於藉語音再取樣萃取共振峰變化之聲調調整技術★ 即時細緻可調性視訊在無線區域網路下之傳輸效率最佳化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著網路和多媒體技術的快速發展,在人們的日常生活中高解析度視頻的重要性與日俱增,目前市面上已出現許多 4K 解析度的視訊內容,相信在未來高解析度視頻勢必會成為主流,然而目前最新的視頻壓縮標準 H.265/HEVC 已經逐漸不敷使用,因此 ISO/IEC MPEG 和 ITU-T VCEG 共同組成聯合視頻探勘小組 (Joint Video Exploration Team, JVET) 並制定下一代視訊壓縮標準 H.266/FVC (Future Video Coding),從2015年開始討論並預計於2020年正式發佈為國際視訊壓縮標準。
H.266/FVC 相較於 H.265/HEVC 在預測單元之畫面內編碼的預測模式由35種擴增至67種,以適應更多不同畫面的任意邊緣方向。H.266/FVC 雖然提供更好的編碼效能,但預測模式數量的增加使在選擇預測模式時,執行複雜度也增加許多,因此針對畫面內編碼,發展如何在畫面品質與編碼複雜度平衡狀態下之預測模式決策是非常重要的議題。
本論文結合近年來非常熱門的人工智慧系統 (Artificial Intelligence, AI),提出基於摺積神經網路於 H.266/FVC 畫面內編碼之模式預測。主要分為兩部分探討:首先第一部份針對預測模型的訓練及訓練資料的選擇來做討論;而第二部份則將訓練好的預測模型整合至 H.266/FVC 壓縮參考軟體中來執行編碼。本論文所提出之方法平均可降低 0.1 % 的 BDBR。
摘要(英) With the rapid development of Internet and multimedia technology, the importance of high-resolution video in daily life has been increasing day by day. However, the latest video compression standard H.265/HEVC has gradually become insufficient. Therefore, ISO/IEC MPEG and ITU-T VCEG together form JVET (Joint Video Exploration Team) and develop the next-generation video compression standard H.266/FVC (Future Video Coding).
Compared to the previous generation of video coding standard H.265/HEVC, the number of prediction modes is added from 35 to 67 to adapt to various local characteristics. Although H.266/FVC can provide better coding performance, it even increases lots of complexity in intra mode prediction dramatically. Therefore, how to develop intra mode prediction decisions in the balance between quality and coding complexity is an important issue.
This paper combines the artificial intelligence system (AI), which is popular in recent years. We proposed intra mode prediction decision in H.266/FVC intra coding based on convolutional neural networks (CNNs). First, we train our intra mode prediction models and select the training data. And then, we integrate the trained prediction models into the reference software JEM7.0 to perform the coding. The proposed method in this paper can achieve 0.1 % BDBR decreasing on average, while the increases in coding time is negligible compared to JEM7.0.
關鍵字(中) ★ 未來視訊壓縮編碼
★ 預測單位
★ 畫面內編碼
★ 模式預測
★ 深度學習
★ 摺積神經網路
關鍵字(英) ★ Future Video Coding (FVC)
★ Prediction Unit (PU)
★ Intra Coding
★ Mode Prediction
★ Deep Learning
★ Convolutional Neural Network (CNN)
論文目次 摘要 ..................................................................................................................... IV
ABSTRACT ........................................................................................................ V
誌謝 ..................................................................................................................... VI
目錄 .................................................................................................................. VIII
附圖索引 .............................................................................................................. X
附表索引 .......................................................................................................... XIII
第一章 緒論 ......................................................................................................... 1
1-1 研究背景 .................................................................................................... 1
1-2 研究動機與目的 ........................................................................................ 2
1-3 論文架構 .................................................................................................... 3
第二章 H.266/FVC 視訊編碼標準介紹 ........................................................... 4
2-1 H.266/FVC 視訊編碼介紹 ........................................................................ 4
2-1-1 H.266/FVC 與 H.265/HEVC 差異 .................................................. 4
2-1-2 編碼流程介紹 .................................................................................... 6
2-2 H.266/FVC 視訊編碼架構介紹 ................................................................ 7
2-2-1 編碼單元 (Coding Unit, CU) ............................................................ 7
2-2-2 預測單元 (Prediction Unit, PU) ...................................................... 13
2-2-2-1 畫面內預測 (Intra prediction) ..................................................................... 13
2-2-2-2 畫面間預測 (Inter prediction) ..................................................................... 16
2-2-3 轉換單元 (Transform Unit, TU) ..................................................... 21
2-3 H.266/FVC 環境設定及視訊樣本介紹 .................................................. 22
2-3-1 環境設定 .......................................................................................... 22
IX
2-3-2 視訊樣本介紹 .................................................................................. 24
第三章 深度學習介紹 ....................................................................................... 29
3-1 類神經網路 .............................................................................................. 30
3-1-1 類神經網路的發展歷史 .................................................................. 30
3-1-2 倒傳遞神經網路 .............................................................................. 33
3-2 深度學習 .................................................................................................. 37
3-2-1 深度神經網路 (DNN) ..................................................................... 37
3-2-2 摺積神經網路 (CNN) ..................................................................... 40
3-3 基於深度學習之模式預測相關文獻 ...................................................... 42
第四章 基於摺積神經網路於 H.266/FVC 畫面內編碼之模式預測 ........... 43
4-1 整體系統架構 .......................................................................................... 43
4-1-1 前處理階段 (Pre-processing stage) ................................................ 44
4-1-2 訓練階段 (Training stage) .............................................................. 47
4-1-3 測試階段 (Testing stage) ................................................................ 50
4-2 提出之決策流程 ...................................................................................... 51
第五章 實驗結果與分析討論 ........................................................................... 52
5-1 實驗環境設置 .......................................................................................... 52
5-2 實驗分析與討論 ...................................................................................... 54
5-3 實驗結果 .................................................................................................. 59
第六章 結論與未來展望 ................................................................................... 62
參考文獻 ............................................................................................................. 63
參考文獻 [1] J. Chen, E. Alshina, G. J. Sullivan, J. R. Ohm and J. Boyce, “Algorithm Description of Joint Exploration Test Model 7 (JEM7),” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 7th Meeting, Doc. JVET-G1001, Torino, July 2017.
[2] JEM reference software, https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/.
[3] High Efficiency Video Coding (HEVC), Rec. ITU-T H.265 and ISO/IEC 23008-2, Jan. 2013.
[4] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012
[5] C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. J. Sullivan, “High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Update 4 of Encoder Description,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 22nd Meeting, Doc. JCTVC-V1002, Oct. 2015.
[6] HEVC reference software, https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.6/.
[7] H. Huang, K. Zhang, Y. W. Huang, and S. M. Lei, “EE2.1: Quadtree plus binary tree structure integration with JEM tools,” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 3rd Meeting, Doc. JVET-C0024, Geneva, May 2016.
[8] M. Karczewicz and E. Alshina, “JVET AHG report: Tool evaluation (AHG1),” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3
64
and ISO/IEC JTC 1/SC 29/WG 11 8th Meeting, Doc. JVET-H0001, Macau, Oct. 2017.
[9] Y. Yamamoto and T. Ikai, “AHG5: Fast QTBT encoding configuration,” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 4th Meeting, Doc. JVET-D0095, Chengdu, Oct. 2016.
[10] J. Chen, W. J. Chien, M. Karczewicz, X. Li, H. Liu, A. Said, L. Zhang, and X. Zhao, “Further improvements to HMKTA-1.0,” ITU-T SG16/Q6, Doc. VCEG-AZ07, Jun. 2015.
[11] J. Chen, Y. Chen, M. Karczewicz, X. Li, H. Liu, L. Zhang and X. Zhao, “Coding tools investigation for next generation video coding,” ITU-T SG16/Q6, Doc. COM16-C806, Feb. 2015.
[12] W. J. Chien, J. Chen, S. Lee, and M. Karczewicz, “Modification of merge candidate derivation,” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 2nd Meeting, Doc. JVET-B0058, San Diego, Feb 2016.
[13] J. L. Lin, Y. W. Chen, Y. W. Huang, and S. M. Lei, “Motion Vector Coding in the HEVC Standard,” in IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 957-968, Dec. 2013
[14] A. Said, X. Zhao, J. Chen, M. Karczewicz, W. J. Chien, and F. Zhou, “Position dependent intra prediction combination,” ITU-T SG16/Q6, Doc. COM16-C1016, Oct. 2015.
[15] K. Suehring and X. Li, “JVET common test conditions and software reference configurations,” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 7th Meeting, Doc. JVET-G1010, Torino, July 2017.
[16] W. S. Mcculloch and W. Pitts, “A Logical Calculus of the Ideas
65
Immanent in Nervous Activity,” Bulletin of Mathematical Biophysics, vol.5, no.4, pp.115-133, Dec. 1943.
[17] D. O. Hebb, “Organization of Behavior,” New York: Wiley & Sons.
[18] V. Nair, and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,” in Proceedings of the 27th International Conference on Machine Learning (ICML-10), Jun. 2010.
[19] S. Sigtia, and S. Dixon, "Improved Music Feature Learning with Deep Neural Networks," in 2014 IEEE International Conference on Acoustics, speech and signal processing (ICASSP), pp. 6959-6963, May 2014.
[20] K. Alex, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, pp.1097-1105, 2012.
[21] Y. Lecun, et al., “Gradient-based learning applied to document recognition”, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[22] I. Mrazova, M. Kukacka, “Hybrid convolutional neural networks”, Industrial Informatics INDIN 2008. 6th IEEE International Conference, 2008.
[23] S. Lawrence, et al., “Face recognition: A convolutional neural-network approach”, IEEE Transactions on Neural Networks, vol.8, no. 1, pp. 98-113, 1997.
[24] T. Laude, J. Ostermann, "Deep learning-based intra prediction mode decision for HEVC", Picture Coding Symp. (PCS), pp. 1-5, 2016.
[25] TensorFlow: an open source Python package for machine intelligence, https://www.tensorflow.org, retrieved Dec. 1, 2016.
[26] J. Dean, et al. “Large-Scale Deep Learning for Building Intelligent
66
Computer Systems,” in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pp. 1-1, Feb. 2016.
[27] G. Bjontegaard, “Calculation of Average PSNR Difference Between RD-curves,” ITU-T Q.6/SG16 VCEG 13th Meeting, Doc. VCEG-M33, 2001.
指導教授 張寶基(Pao-Chi Chang) 審核日期 2018-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明