參考文獻 |
references
[1] Kinect fusion:https://msdn.microsoft.com/en-us/library/dn188670.aspx.
[2] Dbow3 library:https://github.com/rmsalinas/dbow2,2017.
[3] Adrien Angeli,DavidFilliat,St’ephane Doncieux,andJean-ArcadyMeyer.Fastand incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 24(5):1027–1037,2008.
[4] David Arthur and Sergei Vassilvitskii. k-means++:The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027-1035.Society for Industrial and Applied Mathematics,2007.
[5] Herbert Bay,Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In European conference on computer vision, pages 404–417. Springer,2006.
[6] Patrick Beeson,Joseph Modayil,and Benjamin Kuipers.Factoring the mapping problem: Mobile robot map building in the hybrid spatial semantic hierarchy. The International Journal of Robotics Research, 29(4):428–459,2010.
[7] Sean LBowman, Nikolay Atanasov, Kostas Daniilidis, and George J Pappas. Probabilistic data association for semantic slam.In Robotics and Automation(ICRA),2017
IEEE International Conference on, pages 1722–1729.IEEE,2017.
[8] C Chow and CongLiu. Approximating discrete probability distributions with dependence trees. IEEE transactions on Information Theory, 14(3):462–467,1968.
[9] Mark Cummins and Paul Newman.Fab-map:Probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research,
27(6):647–665, 2008.
[10] Mark Cummins and Paul Newman. Accelerating fab-map with concentration inequalities. IEEE Transactions on Robotics, 26(6):1042–1050,2010.
[11] Mark Cummins and Paul Newman. Appearance only slam at large scale with fab-map
2.0. The International Journal of Robotics Research, 30(9):1100–1123,2011.
[12] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part
i. IEEE robotics & automation magazine, 13(2):99-110,2006.
[13] Felix Endres, Jurgen Hess, Jurgen Sturm, Daniel Cremers, and Wolfram Burgard. 3d mapping with an rgb-d camera. IEEE Transactions on Robotics, 30(1):177–187,
2014.
[14] Dorian G’alvez-L’opez and Juan D Tardos. Bags of binary words for fast place recognition in image sequences. IEEE Transactions on Robotics, 28(5):1188–1197,2012.
[15] Xiao-Shan Gao,Xiao-RongHou,Jianliang Tang,and Hang-Fei Cheng. Complete solution classification for the perspective-three-point problem. IEEE transactions on
pattern analysis and machine intelligence, 25(8):930–943,2003
[16] Mathias Gehrig, Elena Stumm, Timo Hinzmann, and Rol and Siegwart. Visualplace recognition with probabilistic vertex voting. arXiv preprint arXiv:1610.03548, 2016.
[17] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. pages 580–587,2014.
[18] Dirk Hahnel, Wolfram Burgard, Dieter Fox, and Sebastian Thrun. An efficient fast-slam algorithm for generating maps of large-scale cyclic environments from raw laser range measurements.In Intelligent Robots and Systems,2003.(IROS2003).Proceedings. 2003 IEEE/RSJ International Conference on, volume 1,pages 206–211.IEEE,
2003.
[19] Ebrahim Karami, Siva Prasad, and Mohamed Shehata. Image matching using sift, surf, brief and orb: Performance comparison for distorted images. arXiv preprint arXiv:1710.02726, 2017.
[20] Mathieu Labb’e and Francois Michaud. Memory management for real-time appearance-based loop closure detection. In Intelligent Robots and Systems(IROS),
2011 IEEE/RSJ International Conference on, pages 1271-1276.IEEE,2011.
[21] Mathieu Labbe and Francois Michaud. Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Transactions on Robotics, 29(3):734–745, 2013.
[22] Mathieu Labb’e and Francois Michaud. Online global loop closure detection for large-scale multi-session graph-based slam. In Intelligent Robots and Systems (IROS2014), 2014 IEEE/RSJ International Conference on, pages 2661–2666.IEEE,2014.
[23] Mathieu Labb’e and Francois Michaud. Long-term online multi-session graph-based splam with memory management. Autonomous Robots, 42(6):1133–1150,Aug 2018.
[24] V.Lepetit, F.Moreno-Noguer, and P.Fua. Epnp: An accurate o(n) solution to the pnp problem. International Journal Computer Vision, 81(2), 2009.
[25]Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. SSD: Single shot multi box detector. pages 21–37. Springer,2016
[26] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,1982.
[27] David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91–110,2004.
[28] Stephanie Lowry, Niko Sunderhauf,
Paul Newman,John J Leonard, David Cox, Peter
Corke,and Michael J Milford. Visual place recognition: A survey. IEEE Transactions on Robotics, 32(1):1–19,2016.
[29] Michael J Milford and Gordon F Wyeth. Seqslam: Visual route-based navigation for sunny summer days and stormy winter nights.In Robotics and Automation(ICRA),
2012 IEEE International Conference on, pages 1643–1649.IEEE,2012.
[30] Ra’ul Mur-Artal and Juan D Tard’os. Orb-slam2: an open-source slam system for monocular. Stereo and RGB-D Cameras. arXiv preprint, 2016.
[31] Paul Newman and KinHo. Slam-loop closing with visually salient features. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages 635–642.IEEE,2005.
[32] David Nister and Henrik Stewenius. Scalable recognition with a vocabulary tree. In Computer vision and pattern recognition, 2006 IEEE computer society conference on, volume 2, pages 2161–2168. IEEE,2006.
[33] Adrian Penate-Sanchez,Juan Andrade-Cetto, and Francesc Moreno-Noguer. Exhaustive linearization for robust camera pose and focal length estimation. IEEE
transactions on pattern analysis and machine intelligence, 35(10):2387–2400,2013.
[34] J.Redmon, S.Divvala, R.Girshick, and A.Farhadi. You only look once:Unified, real-time object detection. pages 779–788, June 2016.
[35] Joseph Redmon and Ali Farhadi. Yolo 9000: Better, faster, stronger. arXiv preprint arXiv:1612.08242, 2016.
[36] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv, 2018.
[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:Towards real-time object detection with region proposal networks. pages 91–99,2015.
[38] Stephen Robertson. Under standing inverse document frequency: on theoretical arguments for idf. Journal of documentation, 60(5):503–520,2004.
[39] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to sift or surf. In Computer Vision(ICCV),2011 IEEE international conference on, pages 2564–2571.IEEE,2011.
[40] Josef Sivic and Andrew Zisserman. Video google:
A text retrieval approach to object matching in videos. In null, page 1470. IEEE,2003. |