博碩士論文 105232006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.235.199.19
姓名 許捷翔(Chieh-Hsiang Hsu)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 利用聚合物摻雜膽固醇液晶拓寬其反射頻譜
(Broadening the reflection bandwidth of cholesteric liquid crystals doped with polymers)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 藍相液晶摻雜旋性聚合物之光電特性研究
★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器
★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究
★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究
★ 離子性材料對向列型液晶自發性配向及其應用之研究★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究
★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器★ 低操作電壓高分子分散型液晶及其應用之研究
★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡
★ 光控及電控散射型/吸收型液晶光閥之研究★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本論文主要區分為兩部分的研究主題,其一為利用旋性聚合物照光聚合過程中,其所提供的螺旋力將逐漸減弱,進而使膽固醇液晶的螺距將隨之漸變,且該過程中旋性聚合物受照光聚合並形成聚合物網絡結構,該結構可穩固聚合過程漸變的螺距,進而獲得反射頻譜拓寬的結果。在此部分實驗我們發現使用適當厚度的液晶盒,右旋性聚合物單體能有效的穩固右旋性膽固醇液晶,此部分最佳拓寬後反射頻譜之波長範圍介於556 nm與813 nm之間(共約257 nm)。若以右旋性聚合物單體穩固左旋性膽固醇液,當右旋性聚合物聚合時,膽固醇液晶的螺距變化較為劇烈,導致膽固醇液晶旋性抵銷不平均,無法均勻的穩固不同旋性的螺距,故造成反射頻譜窄化的現象;本論文另一項研究重點為控溫聚合之聚合物穩固膽固醇液晶螺距,本實驗的目標是穩固部分80oC膽固醇液晶的螺距,且保有降溫至室溫時的膽固醇液晶螺距,故可利用空間上不同反射頻譜的分布拓寬該液晶合反射頻譜。此部分實驗發現,發現於厚度過大的液晶盒中,聚合完成的聚合物枝條將壓迫80oC時的膽固醇液晶螺距,使原本完整80oC時的膽固醇液晶螺距被破壞,且壓縮為更小的螺距,反射頻譜往更短波長偏移且反射率下降,但在液晶盒厚度為5 μm時,聚合物單體確實能有效穩固80oC時的膽固醇液晶螺距,但無法同時保有降溫至室溫時的膽固醇液晶螺距。
摘要(英) Abstract
This thesis consists of two main research topics. The first part is with regard to the broadening the reflection band width of cholesteric liquid crystals (CLCs) by using the photo-polymerization of chiral polymer (LC756). The basic concept can be understood as described follows. With the illumination of UV light, the chirality of the LC mixture can be reduced due to the reduction of the amount of un-polymerized chiral polymer. Moreover, during the photo-polymerization process, the pitch length will gradually increase so that the polymerized LC756 can generate polymer network structures to stabilize the changing pitch length. It indicates that the gradient pitch, causing the broadening of the reflection spectrum, can be obtained by the polymerization process. In this part of the experiments, we found that the right-handed chiral polymer (LC756) can effectively stabilize the right-handed CLC filled into a LC cell with suitable cell gap. Experimentally, the optimized reflection band ranges between 556 and 813 nm, whose bandwidth was about 257 nm. Regarding the case of stabilization of left-handed CLCs by right-handed chiral polymer (LC756), the broadening of reflection band cannot be obtained. We infer that the CLC structure of the case of pitch increasing is much uniform than that of pitch decreasing during photo-polymerization processes. The other research topic in this thesis is the photo-polymerization process at different temperature to stabilize CLCs pitch length. Regarding the temperature dependent pitch length of CLCs, if the reflection band of CLCs at high temperature can be polymer-stabilized, the reflection band can be kept when the temperature is cooled down to room temperature. Hence, with regional photo-polymerization, the additive reflection colors in various regions can be applied to broaden the reflection band of CLCs. The cell gap, curing temperature, and material selection are the main keys to achieve such broadening reflection bands of CLCs
關鍵字(中) ★ 拓寬
★ 反射頻譜
★ 聚合物摻雜
關鍵字(英) ★ Broadening
★ reflection bandwidth
★ doped with polymers
論文目次 目錄
中文摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 IX
圖目錄 X
符號說明 XX
第一章 緒論 1
§ 1-1 前言 1
§ 1-2 研究動機 1
§ 1-3 論文架構 2
第二章 液晶簡介 4
§ 2-1 液晶導論 4
§ 2-2 液晶定義 4
§ 2-3 液晶分類 5
§ 2-4 液晶光電特性 13
§ 2-4-1 光學異向性(Optical anisotropy) 13
§ 2-4-2 溫度對向列型液晶的影響 17
§ 2-4-3 連續彈性體理論 (elastic continuum theory) 18
§ 2-4-4 介電異向性(Dielectric anisotropy) 19
第三章 實驗相關理論介紹 22
§ 3-1 表面配向膜 22
§ 3-2 膽固醇液晶理論 23
§ 3-2-1 膽固醇液晶排列結構 23
§ 3-2-2 影響膽固醇液晶螺距的外在因素 26
§ 3-2-3 膽固醇液晶的光學特性 28
§ 3-3 相關膽固醇液晶反射頻譜拓寬技術 30
第四章 實驗方法與過程 39
§4-1 液晶盒與液晶樣品製程 39
§4-1-1 材料規格 39
§4-1-2 液晶盒製作 44
§4-2 實驗架構 48
§4-2-1 液晶空盒厚度量測 48
第五章 實驗結果與討論 52
§ 5-1 摻雜右旋性聚合物穩固右旋性膽固醇液晶 52
§ 5-1-1膽固醇液晶之穿透頻譜 52
§ 5-1-2摻雜右旋性聚合物穩固右旋性膽固醇液晶 57
§ 5-1-3液晶盒厚度對旋性聚合物穩固膽固醇液晶的影響 72
§ 5-1-4摻雜右旋性聚合物穩固右旋性膽固醇液晶之可見光反射觀測圖 81
§ 5-2 摻雜右旋性聚合物與左旋手性分子穩固膽固醇液晶 82
§ 5-2-1右旋性聚合物與左旋手性分子於右旋性膽固醇液晶的溶解度 84
§ 5-2-2摻雜右旋性聚合物穩固左旋性膽固醇液晶 85
§ 5-2-3紫外光強對旋性聚合物穩固膽固醇液晶的影響 96
§ 5-3控溫聚合之聚合物穩固膽固醇液晶螺距 102
§ 5-3-1 溫度對膽固醇液晶反射頻譜的影響 103
§ 5-3-2以紫外光雷射(波長為405 nm)聚合單體以穩固未添加光起始劑之左旋性膽固醇液晶 108
§ 5-3-3 以紫外光雷射(波長為405 nm)聚合單體以穩固添加光起始劑之左旋性膽固醇液晶 112
§ 5-3-4摻雜聚合物以紫外光雷射(中心波長為405 nm)穩固左旋性膽固醇並添加光起劑且施加電壓 123
§ 5-3-5對添加光起劑於相同溫度以紫外光聚合膽固醇液晶的影響 131
§ 5-3-6控溫聚合之聚合物穩固膽固醇液晶螺距之空間式頻譜拓寬 135
第六章 結論與未來展望 137
§ 6-1 結論 137
§ 6-2 未來展望 141
參考資料 142
參考文獻 參考資料
[1] B. Bahoadur, Liquid crystals-applications and uses, (World Scientific Press, 1990).
[2] F. Reinizer, “Beitrage zur kenntiniss des cholesterins,” Monatsh. Chem. 9, 421-441 (1888).
[3] O. Lehmam, “U ber fliessende Krystalle,” Z. Phys. Chem. 4, 462-472 (1889).
[4] 陳言愈,電控及光控膽固醇液晶光柵之研究 (國立成功大學,碩士論文,民國100年).
[5] 松本正一,角田市良,液晶之基礎與運用 (國立編譯館,1996).
[6] H. Keller, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 1-48 (1973).
[7] G. W. Gray, Thermotropic liquid crystals, (the Society of Chemical Industry 1987).
[8] W. H. de Jeu, Physical properties of liquid crystalline materials, (Gordon & Breach, 1980).
[9] H. S. Kitzerrow and C. Bahr, Chirality in Liquid Crystals, (Springer, New York, 2001).
[10] S. 圓盤狀分子, B. K. Sadashiva, and K. A. Suresh, “Liquid-crystals of disc-like molecules,” Pramana. J. Phys. 9, 471-480 (1977).
[11] A. Yariv, Optical Electronics in Modern Communications, (Oxford University Press, New York, 1997).
[12] A. Yariv, Quantum Electronics, (Wiley, New York, 1988).
[13] P. Yeh and C. Gu, Optics of liquid crystal displays, (John Wiley & Sons, Inc., 2006).
[14] G. R. Fowles, Introduction to modern optics, 2nd ed., (University of Utah, 1975).
[15] I. C. Khoo and S. T. Wu, Optics and nonlinear optics of liquid crystals, (World Scientific, 1993).
[16] P. G. de Gennes, and J. Prost, The physics of liquid crystals, (Oxford University Press, 1993).
[17] L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials, (Springer-Verlag Publishing Co., 1994).
[18] V. Freedericksz and A. Repiewa, “Theoretisches und experimentelles zur frage nach der natur der anisotropen flussigkeiten,” Zeitschrift fur Physik 42, 532 (1927).
[19] P. J. Collings and Michael Hird, Introduction to liquid crystals chemistry and physics (Taylor & Francis Ltd, 1997)
[20] S.T. Wu, D.K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons Ltd, 2001).
[21] T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52-58 (1996).
[22] P. G. de Gennes, “Calcul De La Distorsion D’une Structure Cholesterique Par un Champ Magnetique,” Sol. State Commun. 6, 163 (1968).
[23] R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281 (1968).
[24] P. Fu, P. Ye, Z. Yu, and H. Lu, “Bragg reflection from a cholesteric liquid-crystal slab in the framework of nonlinear optics,” J. Opt. Soc. Am. B 4, 1392 (1987).
[25] Yan-Song Zhang, A.V. Emelyanenko, and Jui-Hsiang Liu, “Fabrication and Optical Characterization of Imprinted Broad-Band Photonic Films via Multiple Gradient UV Photopolymerization,” J. Polym. Sci. Part B Polym. Phys. 55, 1427 (2017).
[26] Man-yu Duan, Hui Cao, Yong Wu, Er-li Li, Hui-hui Wang, Dong Wang, Zhou Yang, Wan-li Hea, and Huai Yangc“Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymerization,” Phys. Chem. Chem. Phys. 19, 2353 (2017).
[27] Jongyoon kim, Hyungmin Kim, Seongil kim, Suseok Choi, Wonbong Jang, Jinwuk Kim, And Ji-Hoon Lee,“Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer,” Applied Optics 56, 5731 (2017).
[28]Hyungmin Kim, Jongyoon Kim, Seongil kim, Jinook Kim, And Ji-Hoon Lee,* “Effect of the ratio between monoacrylate and diacrylate reactive mesogen on the transmission spectrum of polymer-stabilized cholesteric liquid crystal,” Optical Materials Express 8, 97 (2018).
[29] Yong Li, Dan Luo, And Zeng Hui Peng, “Full-color reflective display based on narrow bandwidth templated cholesteric liquid crystal film,” Opt. Mater. Express 7, 16 (2017).
[30] 許維婷,液晶盒厚度量測方法的研究 (國立成功大學,碩士論文民93年).
[31] SIGMA-ALDRICH, retrieved from https://www.sigmaaldrich.com/catalog/product/aldrich/196118
[32] Shin-Ying Lu and Liang-Chy Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91, 131119 (2007)
[33] Su Xu, Yifan Liu, Jie Sun and Shin-Tson Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5, 300-324 (2014).
[34] Yu-Cheng Hsiao, Zong-Han Yang, Dong Shen, and Wei Lee, “Red, Green, and Blue Reflections Enabled in an Electrically Tunable Helical Superstructure,” Adv. Optical Mater. 6, 1701128 (2018)
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2018-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明