博碩士論文 105522116 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.133.152.153
姓名 曾翊銘(Yi-Ming Zeng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 卷積注意力機制長短期記憶深度學習 用於軸承剩餘可用壽命預估
(Convolutional Attention-based Long Short-Term Memory Deep Learning for Estimating Bearing Remaining Useful Life)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著相關技術的成熟,全球製造業結合物聯網、大數據、深度學習與雲端計算等先進技術,從工業3.0的「自動化」走向工業4.0的「智慧自動化」,藉由相關技術的導入,有助於提升生產的效率和穩定性,並提高工廠客製化的能力、以應對市場需求的變化。本論文探討工業4.0中的故障預測與健康管理(Prognostics and Health Management,PHM)研究,透過預估設備或零件剩餘可用壽命,在設備停止運作前,提早進行設備的維修或零件更換,以降低因設備損壞所造成的生產損失,提高生產線的可靠性。
本論文提出一個結合卷積神經網路與循環神經網路的深度學習模型,使用基於注意力機制的長短期記憶神經網路處理時序資料,可以透過LSTM記憶單元
儲存過去輸入的資訊,並且透過注意力機制,在不同的時間點,關注不同的特徵,進行更加準確的預測。本論文在模型前半部加入卷積層與池化層,用以解決原始資料時間序列過長所造成的問題。
本論文將所提方法應用於法國貝桑松研究機構FEMTO-ST的軸承資料集(PRONOSTIA),以預估軸承的剩餘可用壽命,實驗結果顯示,無論是在均方差(Mean Squared Error, MSE)或均方根誤差(Root Mean Squared Error, RMSE),本論文所提的方法都優於其他相關方法。
摘要(英) With the maturity of related technologies, global manufacturing combines advanced technologies such as Internet of Things, big data, deep learning, and cloud computing, from the "automation" of Industry 3.0 to the "wisdom automation" of Industry 4.0. through those technologies, it will increase the efficiency and stability of production, and increase the ability of factory customization to respond to changes in market demand. This paper focuses on the Prognostics and Health Management (PHM) study in Industry 4.0. By estimating the remaining usable life of equipment or parts, equipment repairs or replacements can be performed before it stopped.
This paper proposes a deep learning model that combines convolutional neural networks and recurrent neural networks. It uses long short term memory neural networks based on attention mechanisms to process temporal data, it can store past information through the LSTM memory unit, and through The attention mechanism, our model can focus on different feature at different time and makes more accurate predictions. convolution layer and pooling layer are added in the first half of the model to solve the problems caused by the long sequence.
In this paper, the proposed method is applied to the bearing data set (PRONOSTIA) of FEMTO-ST, a research institute of Besançon, France, to estimate the remaining useful life of the bearing. The experiment results show that both mean squared error (MSE) and Root Mean Squared Error (RMSE), the method proposed in this paper is superior to other related methods.
關鍵字(中) ★ 智慧工廠
★ 剩餘可用壽命
★ 深度神經網路
★ 長短期記憶
★ 卷積神經網路
★ 注意力機制
關鍵字(英)
論文目次 中文摘要 II
一、緒論 1
1-1研究背景與動機 1
1-2研究目的與貢獻 2
1-3論文架構 2
2-1類神經網路 3
2-1-1類神經網路簡介 3
2-1-2前饋式神經網路介紹(Feed-Forward Network) 5
2-1-3 反向傳播方法(Backpropagation) 6
2-2深度學習(Deep Learning) 7
2-2-1深度學習介紹 7
2-2-2卷積神經網絡(Convolutional Neural Networks) 9
2-2-3遞歸神經網路(Recurrent Neural Network, RNN) 11
2-2-4長短期記憶(Long Short-Term Memory, LSTM) 12
2-2-5注意力機制的長短期神經網路(Attention-Based LSTM) 16
三、問題研究與定義 20
3-1問題定義 20
3-2文獻研究 22
3-2-1資料集與標籤 22
3-2-2資料前處理 22
3-2-3深度學習模型架構 23
3-2-4預測評估標準 24
四、研究方法 26
4-1資料前處理 26
4-2神經網路架構 26
4-2-1卷積神經網路 27
4-2-2注意力機制的長短期記憶網路 28
五、實驗結果與分析 30
5-1實驗環境 30
5-2實驗結果 32
六、結論與未來展望 37
七、參考文獻 38
參考文獻 [1] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
[2] Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.
[3] Miao, Q., Xie, L., Cui, H., Liang, W., & Pecht, M. (2013). Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectronics Reliability, 53(6), 805-810.
[4] Vichare, N. M., & Pecht, M. G. (2006). Prognostics and health management of electronics. IEEE transactions on components and packaging technologies, 29(1), 222-229.
[5] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
[6] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
[7] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015, June). Show, attend and tell: Neural image caption generation with visual attention. In International Conference on Machine Learning (pp. 2048-2057).
[8] Ba, J., Mnih, V., & Kavukcuoglu, K. (2014). Multiple object recognition with visual attention. arXiv preprint arXiv:1412.7755.
[9] Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., & Varnier, C. (2012, June). PRONOSTIA: An experimental platform for bearings accelerated degradation tests. In IEEE International Conference on Prognostics and Health Management, PHM′12. (pp. 1-8). IEEE Catalog Number: CPF12PHM-CDR.
[10] Ren, L., Cui, J., Sun, Y., & Cheng, X. (2017). Multi-bearing remaining useful life collaborative prediction: A deep learning approach. Journal of Manufacturing Systems, 43, 248-256.
[11] Neurons introduction:
http://www.hkpe.net/hkdsepe/human_body/neuron.htm
[12] JavaScript neural network implementation:
https://blog.toright.com/posts/5234/javascript-%E5%AF%A6%E7%8F%BE%E9%A1%9E%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-%E7%80%8F%E8%A6%BD%E5%99%A8-deep-learning-%E5%A5%BD%E6%A3%92%E6%A3%92.html
[13] Understanding Feedforward Neural Networks
https://www.learnopencv.com/understanding-feedforward-neural-networks/
[14] An Introduction to Deep Learning
https://blog.algorithmia.com/introduction-to-deep-learning/
[15] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
[16] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
[17] Zhang, J., & Man, K. F. (1998, October). Time series prediction using RNN in multi-dimension embedding phase space. In Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference on (Vol. 2, pp. 1868-1873). IEEE.
[18] Understanding LSTM Networks:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
[19] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2018-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明