博碩士論文 105522034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:109 、訪客IP:3.144.90.236
姓名 何政倫(Jheng-Lun Ho)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 高速視覺檢測影像前處理硬體加速器
(A High Speed Image Preprocessing Hardware Accelerator for Vision Inspection)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 機器視覺在工業自動化生產中應用相當廣泛,檢測環境往往會影響取像品質,導致後續影像處理和辨識效能的降低,進而影響自動化控制系統的整體性能。本研究研發一個高速視覺檢測系統的影像前處理硬體加速器,用以改善機器視覺系統的取像品質和效能。我們設計了自適應影像增強法ADPHE與自適應Wellner二值化硬體加速器。透過兩種影像前處理降低環境對檢測效率的影響,提升了影像品質,並達到高速的處理效能。為了滿足不同影像運算遮罩的需求,我們設計一個可動態調整遮罩大小的彈性化硬體架構,可藉由指令暫存器設定即可得到新的影像前處理硬體加速器,而不需更改電路。最後,我們以FPGA驗證影像前處理硬體加速器效能,本系統在127.81Mhz的時脈下,每秒能處理61張解析度為 的影像,可滿足即時、高取像品質、彈性化的嵌入式視覺檢測應用。
摘要(英) The machine vision is used in industrial automation production extensively, the inspection environment sometimes influences the imaging quality, so that the subsequent image processing and recognition performance are degraded, and then the overall performance of automatic control system is influenced. This study develops an image preprocessing hardware accelerator for high speed vision inspection systems to improve the imaging quality and performance of machine vision system. We design adaptive image enhancement ADPSHE and adaptive Wellner binarization hardware accelerator. The effect of environment on the inspection efficiency is reduced by two kinds of image preprocessing, the image quality is upgraded, and high speed processing performance is implemented. In order to meet the requirement for different image computing masks, an elastic hardware architecture which can adjust the mask size dynamically is designed, a new image preprocessing hardware accelerator can be obtained by command register setting without changing the circuit. Finally, the image preprocessing hardware accelerator performance is validated by FPGA. On the frequency of 127.81Mhz, this system can process 61 frames with images per second, applicable to real-time, high imaging quality and elastic embedded visual inspection.
關鍵字(中) ★ 硬體加速
★ 影像前處理
關鍵字(英)
論文目次 摘要 I
Abstract II
謝誌 III
目錄 V
圖目錄 VIII
表目錄 XI
第一章、 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 論文架構 4
第二章、 文獻回顧 5
2.1 影像對比增強技術 5
2.1.1 直方圖均衡化法 5
2.1.2 分段直方圖均衡化技術 7
2.1.3 直方圖裁剪均衡化技術 10
2.1.4 簡單直方圖修改法 13
2.1.5 自適應雙門檻值法 14
2.2 影像二值化技術 18
2.2.1 全域門檻值方法 18
2.2.2 自適應區域二值化法 19
2.3 MIAT設計方法論 23
2.3.1 IDEF0 24
2.3.2 Grafcet 27
2.3.3 硬體高階合成 30
第三章、 影像前處理硬體加速器設計 32
3.1 系統架構 32
3.1.1 影像前處理模組 33
3.2 影像前處理IDEF0系統架構 33
3.2.1 ADPSHE模組 34
3.2.2 Wellner Binarization模組 35
3.3 影像前處理Grafcet 36
3.3.1 Bayer conversion Grafcet 37
3.3.2 RGB to Gray Grafcet 38
3.3.3 ADPSHE Grafcet 39
3.3.4 Wellner Binarization Grafcet 44
第四章、 實驗結果 49
4.1 實驗平台 49
4.1.1 CMOS Sensor 49
4.1.2 MCU開發平台 50
4.1.3 FPGA開發平台 51
4.1.4 PC軟體驗證平台 52
4.2 影像增強品質評估實驗 53
4.2.1 絕對平均亮度誤差 53
4.2.2 標準差 54
4.2.3 熵 54
4.2.4 峰值訊號雜訊比 54
4.2.5 通用影像質量指數 55
4.2.6 結構相似性 56
4.2.7 影像增強評估結果 57
4.3 影像二值化實驗 61
4.3.1 文字辨識實驗 62
4.3.2 條碼辨識實驗 65
4.4 硬體合成與驗證 68
4.4.1 Bayer Conversion合成模組 69
4.4.2 RGBtoGray合成模組 69
4.4.3 ADPSHE合成模組 69
4.4.4 Wellner Binarization合成模組 71
4.4.5 硬體合成資源 72
4.4.6 軟硬體結果評估 74
4.5 硬體加速驗證 75
4.6 軟硬體系統平台驗證 77
第五章、 結論與未來展望 81
5.1 結論 81
5.2 未來展望 82
參考文獻 83
參考文獻 [1] Y.-C. Chang and C.-M. Chang, "A simple histogram modification scheme for contrast enhancement," IEEE Transactions on Consumer Electronics, vol. 56, no. 2, 2010.
[2] K. Liang, Y. Ma, Y. Xie, B. Zhou, and R. Wang, "A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization," Infrared Physics & Technology, vol. 55, no. 4, pp. 309-315, 2012.
[3] N. Otsu, "A threshold selection method from gray-level histograms," IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-66, 1979.
[4] D. Bradley and G. Roth, "Adaptive thresholding using the integral image," Journal of graphics tools, vol. 12, no. 2, pp. 13-21, 2007.
[5] P. D. Wellner, "Adaptive thresholding for the DigitalDesk," Xerox, EPC1993-110, pp. 1-19, 1993.
[6] U. R. Nelakuditi, M. N. Babu, and T. N. Bhagirath, "Efficient real time hardware co-simulation for image enhancement applications," in Electronics and Communication Systems (ICECS), 2015 2nd International Conference on, pp. 1580-1583: IEEE, 2015.
[7] P. Padmasana, M. N. Mohanty, and H. K. Sahu, "VHDL implementation of spatial filter for image enhancement," in Communications and Signal Processing (ICCSP), 2014 International Conference on, pp. 195-199: IEEE, 2014.
[8] X. Li, G. Ni, Y. Cui, T. Pu, and Y. Zhong, "Real-time image histogram equalization using FPGA," in Electronic Imaging and Multimedia Systems II, vol. 3561, pp. 293-300: International Society for Optics and Photonics, 1998.
[9] S. Sowmya and R. Paily, "FPGA implementation of image enhancement algorithms," in Communications and Signal Processing (ICCSP), 2011 International Conference on, pp. 584-588: IEEE, 2011.
[10] A. M. Alsuwailem and S. A. Alshebeili, "A new approach for real-time histogram equalization using FPGA," in Intelligent Signal Processing and Communication Systems, 2005. ISPACS 2005. Proceedings of 2005 International Symposium on, pp. 397-400: IEEE, 2005.
[11] V. Schatz, "Low-latency histogram equalization for infrared image sequences: a hardware implementation," Journal of real-time image processing, vol. 8, no. 2, pp. 193-206, 2013.
[12] R. S. Alex, S. Deepa, and M. Supriya, "Underwater image enhancement using CLAHE in a reconfigurable platform," in OCEANS 2016 MTS/IEEE Monterey, pp. 1-5: IEEE, 2016.
[13] J. G. Pandey, A. Karmakar, C. Shekhar, and S. Gurunarayanan, "A Novel Architecture for FPGA Implementation of Otsu′s Global Automatic Image Thresholding Algorithm," in VLSI Design and 2014 13th International Conference on Embedded Systems, 2014 27th International Conference on, pp. 300-305: IEEE, 2014.
[14] H. Tian, S. K. Lam, and T. Srikanthan, "Implementing Otsu′s thresholding process using area-time efficient logarithmic approximation unit," in Circuits and Systems, 2003. ISCAS′03. Proceedings of the 2003 International Symposium on, vol. 4, pp. IV-IV: IEEE, 2003.
[15] W. Jianlai, Y. Chunling, Z. Min, and W. Changhui, "Implementation of Otsu′s thresholding process based on FPGA," in Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference on, pp. 479-483: IEEE, 2009.
[16] S. Sarkar, S. S. Bhairannawar, K. Raja, and K. Venugopal, "An Adaptive Threshold based FPGA Implementation for Object and Face detection," in Image Information Processing (ICIIP), 2015 Third International Conference on, pp. 157-161: IEEE, 2015.
[17] F. Kheiri, S. Samavi, and N. Karimi, "A new pipeline design for binarization and thinning of fingerprint images," in Electrical and Computer Engineering, 2005. Canadian Conference on, pp. 2013-2016: IEEE, 2005.
[18] E. Ieno, L. M. Garcés, A. J. Cabrera, and T. C. Pimenta, "Simple generation of threshold for images binarization on FPGA," Ingeniería e Investigación, vol. 35, no. 3, pp. 69-75, 2015.
[19] S. Sadangi, S. Baraha, D. K. Satpathy, and P. K. Biswal, "FPGA implementation of spatial filtering techniques for 2D images," in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 1213-1217, 2017.
[20] P. Karthik and N. Tejashwini, "Design and implementation of adaptive Gaussian filters for the removal of salt and pepper noise on FPGA," in Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT), 016 International Conference on, pp. 53-59: IEEE, 2016.
[21] F. Talbi, F. Alim, S. Seddiki, I. Mezzah, and B. Hachemi, "Separable convolution gaussian smoothing filters on a xilinx FPGA platform," in Innovative Computing Technology (INTECH), 2015 Fifth International Conference on, pp. 112-117: IEEE, 2015.
[22] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Computers & Electrical Engineering, vol. 61, pp. 48-66, 2017.
[23] Y.-T. Kim, "Contrast enhancement using brightness preserving bi-histogram equalization," IEEE transactions on Consumer Electronics, vol. 43, no. 1, pp. 1-8, 1997.
[24] S.-D. Chen and A. R. Ramli, "Preserving brightness in histogram equalization based contrast enhancement techniques," Digital Signal Processing, vol. 14, no. 5, pp. 413-428, 2004.
[25] S.-D. Chen and A. R. Ramli, "Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation," IEEE Transactions on consumer Electronics, vol. 49, no. 4, pp. 1301-1309, 2003.
[26] Y. Wang, Q. Chen, and B. Zhang, "Image enhancement based on equal area dualistic sub-image histogram equalization method," IEEE Transactions on Consumer Electronics, vol. 45, no. 1, pp. 68-75, 1999.
[27] K. Sim, C. Tso, and Y. Tan, "Recursive sub-image histogram equalization applied to gray scale images," Pattern Recognition Letters, vol. 28, no. 10, pp. 1209-1221, 2007.
[28] H. Ibrahim and N. S. P. Kong, "Brightness preserving dynamic histogram equalization for image contrast enhancement," IEEE Transactions on Consumer Electronics, vol. 53, no. 4, 2007.
[29] C. H. Ooi, N. S. P. Kong, and H. Ibrahim, "Bi-histogram equalization with a plateau limit for digital image enhancement," IEEE transactions on consumer electronics, vol. 55, no. 4, 2009.
[30] K. Singh and R. Kapoor, "Image enhancement using exposure based sub image histogram equalization," Pattern Recognition Letters, vol. 36, pp. 10-14, 2014.
[31] Y.-f. SONG, X.-p. SHAO, and J. XU, "New enhancement algorithm for infrared image based on double plateaus histogram [J]," Infrared and Laser Engineering, vol. 2, p. 029, 2008.
[32] W. Niblack, An introduction to digital image processing. Strandberg Publishing Company, 1985.
[33] R. J. Mayer, "IDEF0 function modeling," A Reconstruction of the Original Air Force Wright Aeronautical Laboratory Technical Report, AFWAL-TR-81-4023 (The IDEF0 Yellow Book), Knowledge-Based System Inc, College Station, TX, 1992.
[34] J.-C. Chang, "Design of A Reconfigurable Binary Image Processor and Its Development Platform," National Central University, 2018.
[35] S.-D. Chen and A. R. Ramli, "Minimum mean brightness error bi-histogram equalization in contrast enhancement," IEEE transactions on Consumer Electronics, vol. 49, no. 4, pp. 1310-1319, 2003.
[36] R. C. Gonzalez and R. E. Woods, "Digital image processing," ed: Upper Saddle River, NJ: Prentice Hall, 2012.
[37] Z. Wang and A. C. Bovik, "A universal image quality index," IEEE signal processing letters, vol. 9, no. 3, pp. 81-84, 2002.
[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.
指導教授 陳慶瀚 審核日期 2018-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明