參考文獻 |
林俊慶 , 黃俊堂 , 黃正旭 , 黃鈺晴 , 呂欣澤 , & 楊鎮華 . (2017, March). Prediction mechanism of At-risk students in MOOCs. Paper presented at the Taiwan E-Learning Forum (TWELF).
Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González, M. Á., & Hernández-García, Á. (2014). Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning. Computers in human behavior, 31, 542-550.
Asif, R., Merceron, A., & Pathan, M. K. (2014). Predicting student academic performance at degree level: a case study. International Journal of Intelligent Systems and Applications, 7(1), 49.
Betts, J. R., & Grogger, J. . (2003). The impact of grading standards on student achievement, educational attainment, and entry-level earnings. . Economics of Education Review, 22(24), 343-352.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). ClassiŪcation and Regression Trees (CART). Belmont (CA): Wadsworth.
Çevik, Y. D. (2015). Predicting college students’ online information searching strategies based on epistemological, motivational, decision-related, and demographic variables. Computers & Education, 90, 54-63.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2017). Predicting student performance from LMS data: a comparison of 17 blended courses using Moodle LMS. IEEE Transactions on Learning Technologies, 10(1), 17-29.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B (Methodological), 215-242.
Eide, E., & Showalter, M. H. (1998). The effect of school quality on student performance: A quantile regression approach. Economics letters, 58(3), 345-350.
Galton, F. (1886). Regression towards mediocrity in hereditary stature. The Journal of the Anthropological Institute of Great Britain and Ireland, 15, 246-263.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.
44
Journal of machine learning research, 3(Mar), 1157-1182.
Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robust statistics: the approach based on influence functions (Vol. 196): John Wiley & Sons.
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. Paper presented at the Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on.
Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Computers & Education, 61, 133-145.
Ibrahim, Z., & Rusli, D. (2007). Predicting students’ academic performance: comparing artificial neural network, decision tree and linear regression. Paper presented at the 21st Annual SAS Malaysia Forum, 5th September.
John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. Paper presented at the Proceedings of the Eleventh conference on Uncertainty in artificial intelligence.
Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33-50.
Loterman, G., Brown, I., Martens, D., Mues, C., & Baesens, B. (2012). Benchmarking regression algorithms for loss given default modeling. International Journal of Forecasting, 28(1), 161-170.
Lu, O. H., Huang, J. C., Huang, A. Y., & Yang, S. J. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234.
Lu, O. H., Huang, A. Y., Huang, J. C., LIN, A. J., HIROAKI OGATA, Yang, S. J. . (2017). Applying Learning Analytics for the Early Prediction of Students’ Academic Performance in Blended Learning. Educational Technology & Society.
Mani, I., & Zhang, I. (2003). kNN approach to unbalanced data distributions: a case study involving information extraction. Paper presented at the Proceedings of workshop on learning from imbalanced datasets.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
Meier, Y., Xu, J., Atan, O., & van der Schaar, M. (2016). Predicting grades. IEEE Transactions on Signal Processing, 64(4), 959-972.
Oladokun, V., Adebanjo, A., & Charles-Owaba, O. (2008). Predicting students’
45
academic performance using artificial neural network: A case study of an engineering course. The Pacific Journal of Science and Technology, 9(1), 72-79.
Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240-242.
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572.
Perna, L., Ruby, A., Boruch, R., Wang, N., Scull, J., Evans, C., & Ahmad, S. (2013). The life cycle of a million MOOC users. Paper presented at the Presentation at the MOOC Research Initiative Conference.
Quinlan, J. R. (1983). Learning efficient classification procedures and their application to chess end games Machine Learning, Volume I (pp. 463-482): Elsevier.
Romero, C., López, M.-I., Luna, J.-M., & Ventura, S. (2013). Predicting students′ final performance from participation in on-line discussion forums. Computers & Education, 68, 458-472.
Stigler, S. M. (1989). Francis Galton′s account of the invention of correlation. Statistical Science, 73-79.
Tomek, I. (1976). An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics(6), 448-452.
Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics(3), 408-421.
Yang, S. J., Huang, J. C., & Huang, A. Y. (2017). MOOCs in Taiwan: The Movement and Experiences Open Education: from OERs to MOOCs (pp. 101-116): Springer.
Yoo, J., & Kim, J. (2014). Can online discussion participation predict group project performance? investigating the roles of linguistic features and participation patterns. International Journal of Artificial Intelligence in Education, 24(1), 8-32. |