參考文獻 |
J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks,” Vol. IV, pp. 1942−1948, 1995.
W. D. Chang and S. P. Shih, “PID controller design nonlinear systems using an improved particle swarm optimization approach,” Communication Nonlinear Science and Numerical Simulation, Vol. 15, pp. 3632-3639, 2010.
R. A. Krohling and L. S. Coelho, “Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problem,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , Vol. 36, No. 6, pp. 1407-1416, 2006.
G. Zeng and Y. Jiang, “A Modified PSO Algorithm with Line Search,” In Proceedings of 2010 International Conference on Computational Intelligence and Software Engineering, pp. 1-4, 2010.
Y. Shi and R. C. Eberhart, “Particle Swarm Optimization:Development, Applications and Resource,” In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp. 81-86, 2001.
S. Y. Ho, H. S. Lin, W. H. Liauh, and S. J. Ho, “OPSO: Orthogonal particle swarm optimization and its application to task assignment problems,” IEEE Transactions on Man and Cybernetics, Part A: Systems and Humans, Vol. 38, No. 2, pp. 288-298, 2008.
H. Babaee and A. Khosravi, “An Improve PSO Based Hybrid Algorithms,” In Proceedings of 2011 International Conference on Management and Service Science, pp. 1-5, 2011.
Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” In Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1945-1950, 1999.
M. Clerc and J. Kennedy, “The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73, 2002.
M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” In Proceedings of the Congress on Evolutionary Computation, Vol. 3, pp. 1951−1957, 1999.
N. M. Kwok, D. K. Liu, K. C. Tan, and Q. P. Ha, “An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 823-830, 2006.
Y. T. Juang, S. L. Tung and H. C. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” International Journal of Information Sciences, Vol. 181, pp. 4539-4549, 2011.
A. M. Elbar, S. Abdelshahid, and D. C. Wunsch, “Fuzzy PSO: a generalization of particle swarm optimization,” 2005 IEEE International Neural Networks, Vol. 2, pp.1086–1091, 2005.
J. Wei, L. Guangbin and K. Dong, “Elite Particle Swarm Optimization with Mutation,” 2008 Asia Simulation Conference-7^th International Conference on System Simulation and Scientific Computing, pp.800-803,2008.
W. -P. Lee, W. -Y. Xian and C. -C. Wen, ‘Research on a Modified Particle Swarm Optimization Algorithm,” Journal of Engineering Technology, vol.4,no.2, pp.51-62,2008.
林柏勳,胡光復,沈哲緯,鄭錦桐,「最佳化方法於工程上之應用」,中興工程季刊第103期,2009年4月。
陳鍾誠 (2010年08月23日),(網頁標題) 人工智慧 — 最佳化方法,(網站標題) 陳鍾誠的網站,取自 http://ccckmit.wikidot.com/so:introduction ,網頁修改第 1 版。
吳讚展,「自調整非線性慣性權重粒子群演算法」,國立中央大學,碩士論文,民國101年。
Y. Shi, and R. C. Eberhart, “Evolutionary Programming VII, Parameter Selection in Particle Swarm Optimization,” Springer Berlin Heidelberg, Vol. 1447, pp. 591–600, 1998.
Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1945-1950, 1999.
I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Elsevier Science B.V., Vol. 85, pp. 317-325, 2003.
J. Kennedy, R. C. Eberhart, and Y. Shi, “Swarm intelligence,” Morgan Kaufmann Publishers, San Francisco, 2001.
W. H. Ip, D. Wang, and V. Cho, “Aircraft ground service scheduling problems and their genetic algorithm with hybrid assignment and sequence encoding scheme,” IEEE Systems Journal, Vol. 7, No. 4, 2013.
C. Liu and C. Ouyang, “An adaptive fuzzy weight PSO algorithm,” 2010 Fourth International Conference on Genetic and Evolutionary Computing, pp. 8, 10, 13-15, 2010.
董聖龍,「粒子群演算法於二階時變系統穩定分析與穩定化設計」,國立中央大學,博士論文,民國100年。
M. Dorigo, V. Maniezzo and A. Colorni, “Ant system: Optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 26, No. 1, pp. 29, 41, 1996.
J. Kennedy and W. M. Spears, “Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator,” The 1998 IEEE International Conference on Evolutionary Computation Proceedings, pp. 78-83, 1988.
王文俊,「認識fuzzy」,全華出版,第三版,2007。
TRAN Dang Cong and WU Zhijian, “Adaptive Multi-layer Particle Swarm Optimization with Neighborhood Search,” Chinese Journal of Electronics, Vol.25, No.6, Nov. 2016
M. Pant, T. Radha, and V. P. Singh, “A new particle swarm optimization with quadratic interpolation,” Proceedings of IEEE International Conference on Computational Intelligence and Multimedia Applications, 13-15 December 2007, Sivakasi, Tamil Nadu, pp. 55-60.
J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 281-296, 2006.
N. Iwasaki, K. Yasuda, and G. Ueno, “Dynamic parameter tuning of particle swarm optimization,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 1, no. 4, pp. 353-363, 2006.
M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli, and M. Dorigo, “Heterogeneous particle swarm optimizers,” Proceedings of IEEE congress on Evolutionary Computation, 18-21 May 2009, Trondheim , pp. 698-705.
X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82-102, 1999.
J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test functions for numerical global optimization,” Proceedings of IEEE on Swarm Intelligence Symposium, 8-10 June 2005, pp. 68-75.
P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari, “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Technical report, Nanyang Technological University, Singapore, 2005.
R. Salomon, “Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions,” BioSystems, vol. 39, no. 3, pp. 263-278, 1996.
M. Pant, T. Radha and V. P. Singh, “A New Particle Swarm Optimization with Quadratic Interpolation,” International Conference on Computational Intelligence and Multimedia Applications, pp. 55-60, 2007.
K. E. Parsopoulos and M. N. Vrahatis, “UPSO: a unified particle swarm optimization scheme,” In Lecture series on Computer and Computational Sciences, Vol. 1, pp. 868-873, 2004.
R. Mendes, J. Kennedy and J. Neves, “The fully informed particle swarm:simpler, maybe better,” IEEE Transactions on Evolutionary Computation, Vol. 8, pp. 204-210, 2004.
J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer,” In Proceedings of IEEE on Swarm Intelligence Symposium, pp. 124-129, 2005.
J. Hu, J. Zeng, Y. Yang, “A two-order particle swarm optimization model and the selection of its parameters,” The Sixth World Congress on Intelligent Control and Automation, pp. 3440, 3445, 2006.
陳珈妤,「快速平衡粒子群最佳化方法」,國立中央大學,碩士論文,民國100年。
蔡憲文,「以時變學習因子策略改良粒子群演算法」,國立中央大學,碩士論文,民國99年。
A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Computers and Operations Research, Vol. 33, No. 3, pp. 859-871, 2004.
李憲昌,「維度經驗重心分享粒子群演算法」,國立中央大學,碩士論文,民國102年。
顏淯翔,「改良式粒子群方法之影像追蹤系統應用」,國立中央大學,碩士論文,民國103年。
王鈺潔,「自適應解分享粒子群演算法及其在螺旋電感最佳化設計之應用」,桃園市:國立中央大學,碩士論文,民國104年。
張伯墉,「適應性自我學習粒子群演算法」,桃園市:國立中央大學,碩士論文,民國105年。
曾柏憲,「切換式自我學習粒子群演算法」,桃園市:國立中央大學,碩士論文,民國106年。
J. Liang, A. Qin, P. Suganthan and S. Baskarr, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions”, IEEE Transactions on Evolutionary Computation, Vol.10, No.3, pp.281–295, 2006.
M. Nasir and S. Das, “A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization”, Information Sciences, Vol.209, pp.16–36, 2012
H. Wang, S. Sun, C. Li, S. Rahnamayan and J. Pan, “Diversity enhanced particle swarm optimization with neighborhood search”, Information Sciences, Vol.223, pp.119–135, 2013.
L. Wang, B. Yang and Y. Chen, “Improving particle swarm optimization using multi-layer searching strategy”, Information Sciences, Vol.274, pp.70–94, 2014.
T. D. Cong and WU Zhijian, ” Adaptive Multi-layer Particle Swarm Optimization with Neighborhood Search”, Chinese Journal of Electronics,Vol.25,pp. 1079 – 1088,2016
J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, “Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems”, IEEE Transactions on Evolutionary Computation, Vol.10, No.6, pp.646–657, 2006.
J. Kennedy, “Bare bones particle swarms,” in Proc. IEEE Swarm Intell. Symp., 2003, pp. 80–87.
T. Blackwell, “A study of collapse in bare bones particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 3, pp. 354–372, Jun. 2012
T. Richer and T. Blackwell, “The Levy particle swarm,” in ´ Proc. IEEE Congr. Evol. Comput., 2006, pp. 3150–3157
H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: A comprehensive introduction,” Natural Comput., vol. 1, no. 1, pp. 3–52, May 2002
H.-G. Beyer and B. Sendhoff, “Covariance matrix adaptation revisited: The CMSA evolution strategy,” in Proc. PPSN X, 2008, pp. 123–132.
H.-G. Beyer and S. Finck, “On the design of constraint covariance matrix self-adaptation evolution strategies including a cardinality constraint,” IEEE Trans. Evol. Comput., vol. 16, no. 4, pp. 578–596, Aug. 2012.
M. Campos, R. A. Krohling, and I. Enriquez,” Bare Bones Particle Swarm Optimization With Scale Matrix Adaptation” IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 9, SEPTEMBER 2014
P. Suganthan, N. Hansen, J. Liang, K. Deb, Y.-P. Chen, A. Auger, et al., “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Nanyang Technological Univ., Singapore, and KanGAL IIT Kanpur, Kanpur, India, Tech. Rep. 2005005. [Online]. Available: http://www3.ntu.edu.sg/home/EPNSugan, May 2005, pp. 1–49.
H. Wang, S. Rahnamayan, H. Sun, and M. Omran, “Gaussian bare-bones differential evolution,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 634–647, Apr. 2013 |