博碩士論文 105522099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.147.76.251
姓名 楊佳靜(Chia-Ching Yang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 深度學習架構於音樂推薦之因子分析與效能比較
(Factor Analysis and Performance Comparison on DNN Model for Music Recommendation)
相關論文
★ 行程邀約郵件的辨識與不規則時間擷取之研究★ NCUFree校園無線網路平台設計及應用服務開發
★ 網際網路半結構性資料擷取系統之設計與實作★ 非簡單瀏覽路徑之探勘與應用
★ 遞增資料關聯式規則探勘之改進★ 應用卡方獨立性檢定於關連式分類問題
★ 中文資料擷取系統之設計與研究★ 非數值型資料視覺化與兼具主客觀的分群
★ 關聯性字組在文件摘要上的探討★ 淨化網頁:網頁區塊化以及資料區域擷取
★ 問題答覆系統使用語句分類排序方式之設計與研究★ 時序資料庫中緊密頻繁連續事件型樣之有效探勘
★ 星狀座標之軸排列於群聚視覺化之應用★ 由瀏覽歷程自動產生網頁抓取程式之研究
★ 動態網頁之樣版與資料分析研究★ 同性質網頁資料整合之自動化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在音樂串流服務成為行動裝置必備的應用程式時,意味著每天有無數聆聽音樂的選擇,故音樂推薦系統是留住使用者的重要服務。對供應商而言,音樂線上串流服務則可協助搜集使用者和歌曲的相關資訊,幫助其效能提升,因此音樂推薦於使用者或供應商之間的依存關係,使得音樂推薦逐漸盛行起來。
音樂推薦可考量的影響因素相當多元,包含樂曲風格、樂曲要素和種類等等,而使用者傾聽偏好的社會因素及地理位置,甚至是聆聽時的情境(scenario)以及重覆聆聽的行為也都是重要的考量之一。其難題在於,音樂數量相比電影數量的擴增速度更快,要準確地進行推薦的難度也隨之提升,另外聆聽音樂的成本低廉,但影響的因素複雜,故導致影響歌曲聆聽的動機變得碎片化,其聆聽行為相比電影觀賞行為則較為不固定、規律性較低且不一定會忠實反映使用者對歌曲的興趣所在。
本研究的資料使用KKBOX的使用者及歌曲聆聽相關資訊,預測使用者於接下來一個月內是否重複聽取某首歌曲,我們設計使用者特徵、歌曲特徵和使用者聆聽歌曲時的情境特徵,透過深度學習完成協同式過濾推薦系統,並首先對以模型為主(model-based)的矩陣分解模型以及其延伸模型(NCF、NeuMF)進行效能比較,接著讓特徵結合矩陣分解延伸模型,協助其效能提升,最後對WSDM Cup 2018音樂推薦的最佳模型(Lystdo[22])提出之特徵以及其模型進行架構及因子分析。
摘要(英) When music streaming service nearly becomes an essential application on mobile devices, people have thousands of choice about listening to music. Namely, music recommendation is an important service to retain customers. For content providers, they can gather click data by online streaming service to improve system performance. Therefore, music recommendation systems gradually prevail on account of the dependency relation for it between customers and content providers.
The influential factors of recommendation consist of social factors, geographic location and listening scenario from user preference as well as listening repeatedly behavior. One key problem is that the numbers of songs grow more rapidly than those of movies, which results in increasing difficulties to recommend songs accurately. Since the cost for listening music is low, the factors can be weak and fragmented which leads to complicated motivation. Comparing listening behavior with watching movies behavior, we find the former is unfixed and has low regularity. That is to say, listening behavior could not reflect perfectly the true interest to songs from users.
In this paper, we focus on the KKBOX to predict whether or not the recurring listening event will be triggered with a month. We design context features, user features and song features for combination with deep collaborative filtering. On our experiment, we compare matrix factorization models with the extended model (NCF, NeuMF). We combine features with matrix factorization extended model to improve the performance. Finally, we analyze the features factor and architecture from the best model (Lystdo[22]) in WSDM Cup 2018 music recommendation task.
關鍵字(中) ★ 推薦系統
★ 深度學習
★ 因子分析
關鍵字(英) ★ Recommendation System
★ Deep Learning
★ Factor Analysis
論文目次 摘要 i
Abstract ii
圖目錄 iv
表目錄 v
壹、簡介 1
貳、相關研究 4
2.1 傳統的推薦模型 4
2.1.1 基於內容式(Content-based recommendation) 4
2.1.2 協同過濾式(Collaborative filtering, CF) 5
2.1.3 混合式(Hybrid Approach) 6
2.2 深度學習應用於推薦系統 6
2.2.1 多層感知器於推薦問題 7
2.2.2 卷積神經網絡應用於推薦問題 8
2.2.3 遞歸神經網絡應用於推薦問題 9
2.2.4 自動編碼器應用於推薦問題 9
2.3 WSDM Cup 2018 – Lystdo模型概要及特徵設計 10
?、方法設計 15
3.1 資料集及特徵設計 15
3.2 延伸模型及評估方法 20
肆、實驗結果與分析 22
4.1 深度學習模型應用於矩陣分解 22
4.2特徵效能比較 23
4.3 Lystdo的模型架構以及其特徵設計分析 24
伍、結論 28
參考 29
參考文獻 [1] Jonathan Herlocker, Joseph Konstan, Loren Terveen and John Riedl. Evaluating collaborative filtering recommender systems. In SIGIR ’99, pages 230–237, 1999.
[2] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in Artificial Intelligence, pages 1–19, 2009(Section 3).
[3] Zan Huang, Hsinchun Chen, and Daniel Dajun Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Information Systems, vol. 22, no. 1, pages 116–142, 2004.
[4] Michael Pazzani and Daniel Billsus. Content-based recommendation systems. The Adaptive Web, pages 325–341, 2007.
[5] Pasquale Lops, Marco de Gemmis and Giovanni Semeraro. Recommender Systems Handbook, 2011.
[6] Dmitry Bogdanov, Joan Serra, Nicolas Wack, Perfecto Herrera, and Xavier Serra. Unifying low-level and high-level music similarity measures. IEEE Transactions on Multimedia, 13(99):1–1, 2011.
[7] Pedro Cano, Markus Koppenberger, and Nicolas Wack. An Industrial-strength content-based music recommendation system. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR ’05, page 673, New York, New York, USA, 2005. ACM Press.
[8] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30–37, 2009.
[9] Robin Burke. Hybrid recommender systems: survey and experiments. User Modelling and User-Adapted Interaction. vol. 12, no. 4, pages 331–370, 2002.
[10] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu and Tat-Seng Chua. Neural collaborative filtering. In WWW, pages 173–182. ACM, 2017.
[11] Yading Song, Simon Dixon, and Marcus Pearce. A survey of music recommendation systems and future perspectives. In Proceedings of the 9th International Symposium on Computer Music Modelling and Retrieval, 2012.
[12] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music recommendation. In NIPS 26, pages 2643–2651, 2013.
[13] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 1235–1244, 2015.
[14] Sander Dieleman. Recommending music on Spotify with deep learning. http://benanne.github.io/2014/08/05/spotify-cnns.html, 2014.
[15] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 191–198, 2016
[16] Shuai Zhang, Lina Yao and Aixin Sun, Deep learning based recommender system: A survey and new perspectives. CoRR, vol. abs/1707.07435, 2017.
[17] Hanh T. H. Nguyen, Martin Wistuba, Josif Grabocka, Lucas Rego Drumond, and Lars Schmidt-Thieme. Personalized deep learning for tag recommendation. Springer International Publishing, Cham, 186–197. https://doi.org/10.1007/978-3-319-57454-7 15, 2017.
[18] Yuyun Gong and Qi Zhang. Hashtag recommendation using attention-based convolutional neural network. In IJCAI. 2782–2788, 2016.
[19] Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based Recommendations with Recurrent Neural Networks. CoRR, abs/1511.06939, 2015, 2015.
[20] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th International Conference on World Wide Web. ACM, 111–112, 2015.
[21] How Jing and Alexander J Smola. Neural survival recommender. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. ACM, 515–524, 2017.
[22] Lystdo. WSDM – KKBox’s Music Recommendation Challenge. https://www.kaggle.com/c/kkbox-music-recommendation-challenge/discussion/45942
指導教授 張嘉惠(Chia-Hui Chang) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明