博碩士論文 105522124 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.133.109.58
姓名 呂澄宇(CHENG YU LU)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 特徵降維方法之時間序列應計項目指標在財務危機預測:以美國上市公司為例
(Time series accruals apply in financial distress problem with dimensionality reduction: taking US-listed company for example)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 融合生成對抗網路及領域知識的分層式影像擴增
★ 針織布異常偵測方法研究★ 基於工廠生產資料的異常機器維修預測
★ 萃取駕駛人在不同環境之駕駛行為方法★ 基於刮痕瑕疵資料擴增的分割拼接影像生成
★ 應用卷積神經網路於航攝影像做基於坵塊的水稻判釋之研究★ 採迴歸樹進行規則探勘以有效同時降低多種紡織瑕疵
★ 應用增量式學習於多種農作物判釋之研究★ 應用自動化測試於異質環境機器學習管道之 MLOps 系統
★ 農業影像二元分類:坵塊分離的檢測★ 應用遷移學習於胚布瑕疵檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 財務危機預測問題(Financial distressed prediction problem)已經經過了長時間且廣泛的討論,而本研究主旨在美國上市公司資料集中擴展FDPP的研究方向,過往的學者大多運用財務特徵來進行FDP,而本實驗希望能找出除了財務特徵之外新的特徵能夠提升預測財務危機的表現,且因特徵資料型態的不同也會影響預測的結果,過去已經有學者運用應計項目(Accruals)來進行FDP,但使用的應計項目並不全面,或是著重的問題不再FDP而是在盈餘管理(Earning management),且所使用資料型態都為年資料,因此本實驗著重於運用所有的應計項目(Accruals),跟使用時間序列(Time series)季資料來進行研究,之後會輔以特徵降維來降低維度以提高特徵表現跟進行特徵權重分析。
摘要(英) The financial distressed prediction problem(FDPP) has been discussed for a long time and extensively. The main purpose of this thesis is to focus on US listed companies data to extend FDPP research direction. Most of previous scholars and researcher used financial ratio(FR) to do the prediction. This thesis is hopes to find out new feature besides financial ratio which can improve the performance of FDP result. And we know difference data type will also affect the prediction result. In the past, some scholars had used accruals as feature to do prediction, but its accruals are not comprehensive, or the research question is not focus on FPD but Earning management, and also the data type are year data. Therefore, this thesis focuses on use comprehensive accruals and using time series quarter data to do the research. After all we will dimension reduction to reduce dimensions to improve feature performance and perform feature weight analysis.
關鍵字(中) ★ 應計項目
★ 財務危機預測
★ 時間序列資料
★ 特徵降維
關鍵字(英) ★ accruals
★ time series data
★ dimension reduction
★ FDP
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
一、 緒論 1
1-1. 研究背景 1
1-2. 研究動機 2
1-3. 研究目的 4
1-4. 論文架構 4
二、 文獻探討 5
2-1.FDP相關文獻探討 5
2-2. Accruals相關文獻探討 6
2-3.分類器介紹 9
2-3-1支持向量機(SVM) 9
2-3-2判別分析(DA) 14
2-3-3 最近鄰居分類(KNN) 15
2-3-4 分類回歸樹(CART) 16
2-3-5 單純貝式分類器 17
2-3-6 Bagging Ensemble 18
2-3-7 Boosting Ensemble 20
三、研究資料集 22
3-1. 資料來源 22
3-2. 實驗所用的Accruals 23
四、實驗設計 26
4-1資料前處理 26
4-1-1 正規化處理 26
4-1-2 特徵降維 26
主要成分分析(PCA) 26
4-2 實驗評估方法 29
4-2-1 DET curve(Detection error tradeoff curve) 29
4-2-2 Wilcoxon signed-rank test 31
4-3實驗流程 32
4-3-1 N-Folds模型 32
4-3-2 Hypothesis 實驗流程 33
4-4實驗各項參數設定 35
五、實驗結果 36
5-1 Hypothesis 1 實驗結果分析 36
5-2 Hypothesis 2 實驗結果分析 45
5-3 實驗結果總結 48
六、結論及未來展望 50
6-1 結論 50
6-2 未來展望 53
參考文獻 54
附錄一 - 變數表(FRs + Accruals) 56
附錄二 - 公司配對表 57
參考文獻 [1] P. .Fitzpartrick, “A comparison of ratios of successful industrial enterprises with those of failed firms,” J. Account. Res., pp. 598–605, 1932.
[2] Beaver, “Financial Ratios As Predictors of Failure,” J. Account. Res., vol. 4, no. 1966, pp. 71–111, 1966.
[3] E. I.Altman, “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy,” J. Finance, vol. 23, no. 4, pp. 589–609, 1968.
[4] J. A.Ohlson, “Financial Ratios and the Probabilistic Prediction of Bankruptcy,” J. Account. Res., vol. 18, no. 1, p. 109, 1980.
[5] A.Gepp, “Business failure prediction using decision trees,” 2009.
[6] F.Lin, D.Liang, C. C.Yeh, andJ. C.Huang, “Novel feature selection methods to financial distress prediction,” Expert Syst. Appl., vol. 41, no. 5, pp. 2472–2483, 2014.
[7] W.SenChen andY. K.Du, “Using neural networks and data mining techniques for the financial distress prediction model,” Expert Syst. Appl., vol. 36, no. 2 PART 2, pp. 4075–4086, 2009.
[8] F.Barboza, H.Kimura, andE.Altman, “Machine learning models and bankruptcy prediction,” Expert Syst. Appl., vol. 83, pp. 405–417, 2017.
[9] M. Y.Chen, “Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches,” Comput. Math. with Appl., vol. 62, no. 12, pp. 4514–4524, 2011.
[10] L.-S.Liang, Deron;Chang, “國 立 中 央 大 學 資 訊 工 程 學 系 碩 士 論 文 Corporate government indicators apply in financial distress problem based on ensemble method?: taking US-listed Company for example.”
[11] T. D.Janes, “Accruals, Financial Distress, and Debt Covenants,” Univ. Michigan Bus. Sch., no. January, 2003.
[12] P.duJardin, D.Veganzones, andE.Severin, “Forecasting Corporate Bankruptcy Using Accrual-Based Models,” Comput. Econ., pp. 1–37, 2017.
[13] R. G.Sloan, “Do Stock Prices Fully Refelct Information in Accruals and Cash Flows About Future Earnings?,” Account. Rev., vol. 71, no. 3, pp. 289–315, 1996.
[14] R. A. FISHER, “THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS,” 1954.
[15] X.Wu et al., Top 10 algorithms in data mining, vol. 14, no. 1. 2008.
[16] L.Breiman, J. H.Friedman, R. A.Olshen, andC. J.Stone, “Classification and Regression Trees,” Cole Publ. Monterey, vol. 535, p. 358, 1984.
[17] L.Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996.
[18] R. E.Schapire, “The Strength of Weak Learnability (Extended Abstract),” Mach. Learn., vol. 227, no. October, pp. 28–33, 1989.
[19] Y. F.Schapire andE. Robert, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” J. Comput. Syst. Sci., vol. 12, no. 0, 1997.
[20] A.Martin, G.Doddington, T.Kamm, M.Ordowski, andM.Przybocki, “The DET Curve in Assessment of Detection Task Performance,” Proc. Eurospeech ’97, pp. 1895–1898, 1997.
[21] F.WILCOXON, “Individual comparisons of grouped data by ranking methods.,” J. Econ. Entomol., vol. 39, no. 6, p. 269, 1946.
指導教授 梁德容(Deron Liang) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明