博碩士論文 105521009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.12.108.7
姓名 楊凱丞(Kai-Cheng Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 硫化銅-氧化鋅複合材料及其熱電特性研究
(Thermoelectric Properties of CuS-ZnO Composite)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 熱電效應是利用熱電材料本身的特性,將熱能與電能相互轉換的現象,而廢熱存在於我們身邊許多裝置,回收這些廢熱在環保層面有著非常高的價值。熱電元件的應用非常廣泛,可以做為發電系統的廢熱回收,亦可做為致冷晶片使用,或是汽車的能源回收,甚至可做為隨身裝置晶片的能源。而熱電材料為固態設備,具有無汙染、體積小、重量輕、無噪音、無耗損、結構簡單等優點。目前科學家著重於奈米結構的改良與複合材料的開發,以期能夠增加ZT值,使熱電效應能夠達到商業化應用之標準。
本研究著重於探討硫化銅-氧化鋅合金與其他材料之熱電特性,找出合適的p-type材料應用於熱電模組的製作。量測範圍於室溫至523K,並探討其熱電模組的特性與未來應如何改善熱電模組的效能。
摘要(英) The thermoelectric effect is a phenomenon of converting heat energy to electricity, and can be used in wide applications, including waste heat recycling, thermoelectric cooler, and portable power. It has the advantages of no pollution, small volume, light weight, no noise, and simple component structure, etc.
This study was focused on the development as well as the thermoelectric properties of CuS-ZnO alloy and the module made by this p-type material. Thermoelectric module was measured from room temperature to 523K, and the characteristic performance is analyzed and discussed.
關鍵字(中) ★ 硫化銅-氧化鋅
★ 熱電特性
★ 席貝克效應
關鍵字(英) ★ CuS-ZnO
★ Thermoelectric Properties
★ Seebeck Effect
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章、緒論 1
1-1 前言 1
1-2 熱電效應 2
1-2-1 席貝克效應(Seebeck Effect) 2
1-2-2 帕爾帖效應(Peltier Effect) 3
1-2-3 湯姆森效應(Thomson Effect) 4
1-3 熱電優質(Figure of Merit) 4
1-4 研究動機 5
第二章、理論基礎與文獻回顧 6
2-1 熱電材料 6
2-2 p-type氧化物的摻雜 6
2-3 熱壓法 7
2-4 冷壓法 7
2-5 熱電模組 7
第三章、實驗流程與儀器設備 8
3-1 三氧化二銦、三氧化二鉻、氧化鎳摻雜 8
3-2 硫化銅合金 8
3-3 熱電模組製作 10
3-4 實驗儀器 12
3-4-1 四點探針 12
3-4-2 Seebeck量測 14
3-4-3 行星式球磨機 16
3-4-4 霍爾量測儀 17
3-4-5 熱導量測 17
3-4-6 熱擴散係數量測 18
3-4-7 密度 19
3-4-8 比熱量測 20
3-4-9 模組電性分析 21
第四章、實驗結果與討論 25
4-1 前言 25
4-2 三氧化二鉻、氧化鎳塊材量測分析 25
4-3 三氧化二銦塊材量測分析 26
4-4 硫化銅-氧化鋅合金量測分析 28
4-5 硫化銅-氧化鋅合金熱電特性 30
4-5-1 功率因子計算 30
4-5-2 穩定度測試 33
4-5-3 熱導率計算 34
4-5-4 硫化銅-氧化鋅合金之ZT 36
4-6 熱電模組分析 37
4-6-1 開路電壓 37
4-6-2 短路電流 37
4-6-3 功率輸出 37
4-6-4 模組(1)量測結果 38
4-6-5 模組(2)量測結果 40
4-6-6 模組理論值 43
4-7 結論與未來展望 44
參考文獻 45
參考文獻 1. Martin, J., et al., High temperature Seebeck coefficient metrology. Journal of Applied Physics, 2010. 108(12): p. 121101.
2. 朱旭山, 熱電材料與元件之原理與應用. 2005: 工業材料雜誌 22期.
3. 巫振榮, 熱電元件應用. 國家奈米元件實驗室.
4. Harman, et al., Measurement of thermal conductivity by utilization of the Peltier effect. Journal of Applied Physics, 1959. 30(9): p. 1351-1359.
5. Chen, J., et al., The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator. Journal of Applied Physics, 1996. 79(11): p. 8823-8828.
6. Liu, C.-Y., Development of bismuth telluride alloy thin film thermoelectric devices. 2015, National Taiwan University.
7. 劉君愷, 車用熱電廢熱回收技術. 2015: 工業材料雜誌 340期.
8. Goldsmid, H.J., et al., Douglas, The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954. 5(11): p. 386.
9. Hsu, K.-F., et al., Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Vol. 303. 2004. 818-21.
10. Biswas, K., et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489: p. 414.
11. Venkatasubramanian, R., et al., Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001. 413: p. 597.
12. Zhang, K., et al., P-type transparent conducting oxides. Vol. 28. 2016. 383002.
13. Kawazoe, H., et al., P-type electrical conduction in transparent thin films of CuAlO2. Nature, 1997. 389: p. 939.
14. Hautier, G., et al., Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nature Communications, 2013. 4: p. 2292.
15. 王聖博, P型金屬氧化物薄膜的備製應用於軟性電子. 2016, 國立中央大學.
16. Ellmer, K., Past achievements and future challenges in the development of optically transparent electrodes. Nature Photonics, 2012. 6: p. 809.
17. Rowe, D.M., et al., Design theory of thermoelectric modules for electrical power generation. IEE Proceedings - Science, Measurement and Technology, 1996. 143(6): p. 351-356.
18. 黃振東、徐振庭, 熱電材料. 2013, 科學發展486 期: 工業技術研究院材料與化工研究所.
19. Rowe, D.M., et al., Evaluation of thermoelectric modules for power generation. Journal of Power Sources, 1998. 73(2): p. 193-198.
20. El-Menshawy, K., et al., Electrical Conductivity of Sintered Chromia Mixed with TiO2, CuO and Mn-Oxides. Vol. 22. 2006.
21. Elisabetta, A., et al., Band alignment at the interface between Ni-doped Cr 2 O 3 and Al-doped ZnO: implications for transparent p–n junctions. Journal of Physics: Condensed Matter, 2016. 28(22): p. 224004.
22. Mannam, R., et al., Reversible p-type conductivity in H passivated nitrogen and phosphorous codoped ZnO thin films using rapid thermal annealing. Applied Surface Science, 2017. 400: p. 312-317.
23. Grossner, U., et al., Carrier concentration and shallow electron states in Sb-doped hydrothermally grown ZnO. Superlattices and Microstructures, 2007. 42(1): p. 294-298.
24. Xu, X., et al., Chemical bath deposition of p-type transparent, highly conducting (CuS)x:(ZnS)1–x nanocomposite thin films and fabrication of Si heterojunction solar cells. Nano Letters, 2016. 16(3): p. 1925-1932.
25. Woods?Robinson, R., et al., P?type transparent Cu?alloyed ZnS deposited at room temperature. Advanced Electronic Materials, 2016. 2(6): p. 1500396.
26. Sales, B.C., Smaller is cooler. Science, 2002. 295(5558): p. 1248-1249.
27. Smits, F.M., Measurement of sheet resistivities with the four?point probe. bell system technical journal, 1958. 37(3): p. 711-718.
28. Iwanaga, S., et al., A high temperature apparatus for measurement of the Seebeck coefficient. Review of Scientific Instruments, 2011. 82(6): p. 063905.
29. Bolokang, A.S., et al., Solid-state transformation in ball milled nickel powder. Materials Letters, 2010. 64(17): p. 1894-1897.
30. van der Pauw, L.J., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Repts., 1958. 13: p. 1-9.
31. Moser, D., et al., Compact multifunctional test structure to measure the in-plane thermoelectric figure of merit ZT of thin films. in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). 2015.
32. Min, S., J. Blumm, et al., A new laser flash system for measurement of the thermophysical properties. Thermochimica Acta, 2007. 455(1): p. 46-49.
33. 王威傑, 矽基熱電模組開發及特性研究. 2017, 國立中央大學.
34. Reddy, E.S., et al., Fabrication and properties of four-leg oxide thermoelectric modules. Journal of Physics D: Applied Physics, 2005. 38(19): p. 3751.
35. Nuwayhid, R.Y., et al., Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Conversion and Management, 2005. 46(9): p. 1631-1643.
36. Kadam, P., et al., Al-doped ZnO nanocrystals. Journal of Applied Physics, 2008. 104(10): p. 103501.
37. Callaway, J., Model for Lattice Thermal Conductivity at Low Temperatures. Physical Review, 1959. 113(4): p. 1046-1051.
38. Li, Y., et al., Improved vertical silicon nanowire based thermoelectric power generator with polyimide filling. IEEE Electron Device Letters, 2012. 33(5): p. 715-717.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明