博碩士論文 105521015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.137.173.98
姓名 吳松霖(Song-Lin Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用砷化鋁銦為基料並具有垂直正面入射結構、高速、高線性度、高增益頻寬積、和高靈敏度的累增崩潰二極體在100 Gbit/sec ER-4 通信系統的應用
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們提出具高傳輸(大於25 Gbit/sec)、高響應度、高線性度、高增益頻寬積且低暗電流表現的正面收光且藉由蝕刻出圓柱的In0.52Al0.48As累增崩潰光二極體。為了避免元件表面崩潰和繁瑣的保護環結構(Guard ring structure),此元件磊晶結構主要是N型摻雜在磊晶片的下方,且由In0.52Al0.48As組成的累增(Multiplication)層則設計靠近N型摻雜並在整個磊晶結構的下方。
此外,我們設計元件結構用兩個圓柱裡面包含兩層電荷(Charge)層,以此方式去把累增層裡的電場強烈得局限在中心並減少圓柱周圍的崩潰機會。與背面收光和成本較高的覆晶封裝技術(flip-chip bond)相比,我們提出的元件有簡單的正面收光結構、有較大的25 m主動區半徑能更輕易地去做光學上的對光、可以在單位增益下(unit gain)達到合理的擊穿響應度(0.53 A/W使用1.31 m的波長量測)和在低增益(MG= ~ 6.3)下操作可以擁有良好的3-dB頻率響應(17.5 GHz)、高增益頻寬積(410GHz且在單位增益下擁有55%的外部量子效率)且在高功率(1 mW)和0.9 Vbr操作下保持不變的頻率響應(17.5 GHz),此增益頻寬積(235GHz-A/W)甚至比日本NTT(214GHz-A/W)使用覆晶封裝的值更大。經由將APD封裝在25 Gbit / sec轉阻放大器(TIA)規格中並應用於100 Gbit / sec 接收器光學子組件(ROSA),在25.78 Gbit / sec傳輸量下擁有約-20 dBm光調製幅度(OMA)的良好靈敏度。這樣的表現已經可以滿足100 GbE-ER-4 lite(40 km)系統所需的接收器靈敏度(-18.5 dBm OMA)。
摘要(英) A novel type of top-illuminated, etch-mesa In0.52Al0.48As-based avalanche photodiode (APD) with high-speed, high responsivity, high linearity, high Gain-Bandwidth product and low dark current performance has been demonstrated. The 25G APD device is composed of n-side down design with the In0.52Al0.48As multiplication (M) layer buried at the bottom to avoid the issues of surface breakdown and complex guard ring structure.
In addition, we demonstrate that the new structure with two charge layers and daul mesas can effectively confine the electric-field within the center of M-layer and minimize the edge breakdown around the periphery of mesa. In contrast to the costly flip-chip bonding package with backside illumination, our demonstrated device is based on a simple top-illuminated structure that includes a large active diameter of 25m for easy optical alignment, a reasonable punch-through responsivity (0.53 A/W at 1.31 m wavelength), and a good 3-dB optical-to-electrical bandwidth (17.5GHz) under low gain operations (MG≒6.3) and large gain-bandwidth product (GBP) (410 GHz; 55% external efficiency at the unit gain) while maintaining invariant high-speed (17.5 GHz) under high-power (1 mW) and 0.9 Vbr operations, this GBP value (235 GHz-A/W) is even larger than NTT’s achievement (214 GHz-A/W) by using the flip chip packages. By packaging the demonstrated APD with a 25 Gbit/sec trans-impedance amplifier in a 100 Gbit/sec ROSA package, a good sensitivity of around -20 dBm optical modulation amplitude (OMA) at 25.78 Gbit/sec data rate. Such performance can meet the required receiver sensitivity (-18.5 dBm OMA) in 100 GbE-ER-4 lite (40 km) system.
關鍵字(中) ★ 累增崩潰二極體
★ 高增益頻寬積
★ 高線性度
★ 砷化鋁銦
★ 正面收光
關鍵字(英) ★ APD
★ Avalanche Photodiode
★ High gain-bandwidth product
★ 100Gbit/s ER4-lite
★ InAlAs
★ front illuminated
論文目次 Abstract i
摘要 ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 序論 1
§1-1 網路時代與資料中心 1
§1-2 高功率電致吸收調變雷射(EML)和高敏感光偵測器 3
§1-3 傳統的累增崩潰光二極體 7
§1-4 分離式吸收、電荷、累增之累增崩潰光二極體(SACM APD) 10
§1-5 InP based SACM累增崩潰光二極體 11
§1-6 10 GBit/sec InAlAs based SACM累增崩潰光二極體 13
§1-7 25 GBit/sec InAlAs based SACM累增崩潰光二極體 17
第二章 累增崩潰光二極體之設計與製作 21
§2-1 累增崩潰光二極體之設計與模擬 21
§2-2 累增崩潰光二極體之製程 27
第三章 累增崩潰光檢測器之量測、應用與結果討論 43
§3-1 量測系統之架設 43
§3-2 量測結果 45
§3-3 於100GbE-ER-4-Lite系統中的應用 54
第四章 結論與未來研究方向 56
§4-1 結論 56
§4-2 未來研究方向 57
參考文獻 59
附錄 62
參考文獻 [1] http://www.ieee802.org/3/ba/
[2] https://medium.com/@echobrown1314/introduction-on-100g-qsfp28-4wdm-and-100g-qsfp28-er4-lite-optical-transceivers-6a37fd5a9a58
[3] FOSCO: Loss spectrum of a single mode fiber_https://www.fiberoptics4sale.com/blogs/archive-posts/95052294-optical-fiber-attenuation
[4] T. Fujisawa, M. Arai, N. Fujiwara, W. Kobayashi, T. Tadokoro, K. Tsuzuki, Y. Akage, R. Iga, T. Yamanaka, and F. Kano, “First 40-km SMF Transmission for 100-Gbit/s Ethernet System Based on 25-Gbit/s 1.3-m Electroabsorption Modulator Integrated with a DFB Laser Module,” Proc. ECOC 2009, Vienna, Austria, Sep., 2009, pp. 8.6.4.
[5] S. Kanazawa, T. Fujisawa, K. Takahata, T. Ito, Y. Ueda, W. Kobayashi, H. Ishii, and H. Sanjoh, “Flip-Chip Interconnection Lumped-Electrode EADFB Laser for 100-Gb/s/λ Transmitter,” IEEE Photon. Tech. Lett., vol. 27, no. 16, pp. 1699-1701, Aug., 2015.
[6] http://www.ieee802.org/3/av/public/2006_11/3av_0611_lee_1.pdf
[7] S. O. Kasap, “Optoelectronics and photonics: principles and practices,” Prentice Hall, 2001.
[8] George M. Williams and Andrew S. Huntington, “Probabilistic analysis of Linear Mode vs Geiger Mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE, vol. 6220, no. 622008, 2006.
[9] B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-Mode Avalanche Photodiodes for Three- Dimensional Imaging,” Lincoln Laboratory Journal, vol. 13, no. 2, pp. 335-350, 2002.
[10] H. Kosaka, A. Tomita, Y. Nambu, T. Kimura and K. Nakamura, “Single-photon interference experimentover 100 km for quantum cryptography system using balanced gated-modephoton detector,” IEE Electron. Lett., vol. 39, no. 16, pp. 1199-1201, Aug. 2003.
[11] J. Jung , Y. H. Kwon , K. S. Hyun and I. Yun, “Reliability of planar InP–InGaAs avalanche photodiodes with recess etching, ” J. Lightw. Technol., vol. 14, no. 8, pp. 1160-1162, Aug. 2002.
[12] M. A. Itzler, K. K. Loi, S. McCoy, N. Codd, “High-performance, manufacturable avalanche photodiodes for 10 Gb/s optical receivers,” Proc. OFC 2000, Baltimore, MD, USA, vol. 4, pp. 324-326, 2000.
[13] J. Jung , Y. H. Kwon , K. S. Hyun and I. Yun, “Reliability of planar InP–InGaAs avalanche photodiodes with recess etching, ” J. Lightw. Technol., vol. 14, no. 8, pp. 1160-1162, Aug. 2002.
[14] H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APD’s,” J. Lightw. Technol., vol. 6, no. 10, pp.1496-1501, Oct. 1988.
[15] Mohammad A. Saleh, Majeed M. Hayat, Paul P. Sotirelis, Archie L. Holmes, Joe C. Campbell, Bahaa E. A. Saleh and Malvin Carl Teich ”Impact-Ionization and Noise Characteristics of Thin III–V Avalanche Photodiodes,” IEEE Transactions on Electron Devices, vol. 48, pp. 2722-2731, DEC 2001.
[16] J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent Advances in Avalanche Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 777-787, July/Aug., 2004.
[17] E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, and T. Ishikawa, “Degradation Mode Analysis on Highly Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes,” IEEE/OSA Journal of Lightwave Technology, vol. 25, pp. 3686-3693, Dec., 2007.
[18] B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photon. Tech. Lett., vol. 15, pp. 1898-1900, Sep., 2006.
[19] M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa Avalanche Photodiode With Inverted P-Down Structure for Reliability and Stability,” IEEE/OSA Journal of Lightwave Technology, vol. 32, no. 8, pp. 1543-1548, April, 2014.
[20] http://www.albisopto.com/wp-content/uploads/2017/03/ProductBrief_APD16L_A4.pdf
[21] M. Nada, T. Yoshimatsu, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, “Design and Performance of High-Speed Avalanche Photodiodes for 100-Gb/s Systems and Beyond,” IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 5, pp. 984-990, March, 2015.
[22] X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. A. Tulchinsky, and K. J. Williams, “High-Saturation-Current InP-InGaAs Photodiode With Partially Depleted Absorber” IEEE Photon. Technol. Lett., vol. 15, pp. 1276-1278, Sep., 2003.880, April, 2005.
[23] Y.-S. Wu, J.-W. Shi, J.-Y. Wu, F.-H. Huang, Y.-J. Chan, Y.-L. Huang, and R. Xuan “High Performance Evanescently Edge Coupled Photodiodes with Partially p-Doped Photo-absorption Layer at 1.55 m Wavelength” IEEE Photon. Tech. Lett vol. 17, pp.878-880, April, 2005.
[24] Y. L. Goh, J. S. Ng, C. H. Tan, W. K. Ng, and J. P. R. David, “Excess Noise Measurement in In0.53Ga0.47As,” IEEE Photon. Tech. Lett., vol. 17, pp. 2412-2414, Nov., 2005.
[25] M. Nada, S. Kanazawa, H. Yamazaki, Y. Nakanishi, W. Kobayashi, Y. Doi, T. Ohyama, T. Ohno, K. Takahata, T. Hashimoto, and H. Matsuzaki, “High-linearity Avalanche Photodiode for 40-km Transmission with 28-Gbaud PAM-4,” Proc. OFC 2015, Los Angeles, CA, USA, March, 2015, pp. M3C.2
[26] M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-Bandwidth Product Back-Side Illuminated AlInAs Avalanche Photodiodes,” IEEE Photon. Tech. Lett., vol. 22, no. 18, pp. 1373-1375, Sep., 2010.
[27] Jin-Wei Shi and C.-W. Liu, "Design and Analysis of Separate-Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors" IEEE/OSA Journal of Lightwave Technology, vol. 22, pp.1583-1590, June, 2004.
[28] Jin-Wei Shi, Kai-Lun Chi, Chi-Yu Li, and Jhih-Min Wun “Dynamic Analysis of High-Efficiency InP Based Photodiode for 40 Gbit/sec Optical Interconnect across a Wide Optical Window (0.85 to 1.55 m),” IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 4, pp. 921-927, Feb., 2015.
[29] Xiaowei Li, Ning Li, Stephane Demiguel, Joe C. Campbell“A Comparison of Front- and Backside-Illuminated High-Saturation Power Partially Depleted Absorber Photodetecters” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 9, SEPTEMBER 2004
[30] http://www.ieee802.org/3/ba/
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2018-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明