博碩士論文 985402003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.225.98.116
姓名 張宸銘(Chen-Ming Chang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 寬鬆手勢辨識技術研究
(The studies on loose hand gesture recognition)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 即時且精確的手勢辨識 (hand gesture recognition, HGR) 是一個重要且便捷的人機介面。在本研究中,我們分別使用基於手勢之幾何關係特徵方法和深度學習兩種技術實現了兩個靜態寬鬆手勢辨識 (loose hand gesture recognition, LHGR) 系統。所謂的寬鬆手勢是指手指彎曲程度、手掌方向、及手腕彎曲角度允許有較大的變異。
基於幾何關係特徵的LHGR系統使用深度傳感器 (depth camera) 擷取深度影像,同時使用彩色與深度資料讓手勢辨識更精準。手勢辨識程序通常分為三個階段:手部偵測、特徵擷取、和手勢分類。我們所提的方法均能有效的改進這三個步驟的效能。在手部偵測階段,我們提出一種符合人手特徵的動態ROI估計法和手腕切割法。在特徵擷取階段,我們使用了局部特徵、整體特徵、和深度編碼構建出更可靠的基於手勢之幾何關係特徵 (relational features)。在手勢分類階段,我們使用三層分類器,包括手指計數、手指名稱匹配、和編碼比較,來分辨16種手勢。最後,手勢經過一個自適應決策演算法 (adaptive decision) 調整,使手勢的辨識結果更為穩定。傳統的HGR方法常為了獲得更好的辨識結果而設計出複雜且嚴格的判斷條件;我們的方法利用較寬鬆的準則判斷各手指與手掌的相對幾何關係,然後再根據其幾何關係分類為相對應的手勢,因此我們的方法對寬鬆手勢可取得較好的容忍度。
卷積神經網路 (convolutional neural network, CNN) 能夠提取適應各種變異的手勢特徵,在樣本充足的條件下可以克服光影變化、模糊雜訊、手部旋轉等因素。我們提出的基於深度學習的LHGR系統同時使用了兩個獨立輸入架構各自讀取彩色影像和深度影像,兩個架構一開始各別學習彩色與深度的低階 (low-level) 特徵,之後再合併學習整體的RGBD高階 (high-level) 特徵;這麼做的好處是可以抑制彩色影像與深度影像像素對位不精準的問題,而且也可以縮減網路模型的參數量。另外我們使用多重解析度特徵來參與最後的手勢分類,因此對於較小、較遠、較模糊的手勢具有更強的辨識能力。訓練階段我們使用包含各種變異的寬鬆手勢資料集訓練我們的CNN模型,使CNN具備辨識寬鬆手勢的能力。在實驗中,我們比較了多種不同架構的卷積神經網路模式之結果;其中我們提出的模型之mAP值達到最高的0.997333。我們的方法除了可以很好且有效率的搭配彩色影像與深度影像,也對較低品質的影像有較好的辨識能力(即使訓練資料中缺少較低品質的影像資料),其中對於10×10的影像資料集仍有0.662222的mAP。如上所述,我們所提出的方法不僅具有手勢縮放和旋轉的可靠性,而且允許較低解析度的影像作為輸入,因此我們提出的CNN模型很適合應用於我們的LHGR系統。
摘要(英) A quickly-responded precise hand gesture recognition (HGR) system is an important and convenient human–computer interaction (HCI). In this paper, we propose two loose hand gesture recognition (LHGR) systems individually using a cascade classifier with geometric relational features and a multi-resolution convolutional neural network. The loose means that the system accepts more different variations on the bending degrees of fingers, the direction of palm, and the bending angles of wrist.
The LHGR system based on geometric relational features uses a depth camera, which not only maintains an impressive accuracy in real-time processing but also enables the users to pose loose gestures. The process of a HGR system is usually divided into three stages: hand detection, feature extraction, and gesture classification. However, the method we propose has been useful in improving all the stages of HGR. In the hand detection stage, we propose a dynamic ROI estimation method and a wrist-cutting method that conform to the characteristics of a human hand. In the feature extraction stage, we use the more reliable geometric relational features which are constructed by local features, global features, and depth coding. In the gesture classification stage, we use three layers of classifiers including finger counting, finger name matching, and coding comparison; these layers are used to classify 16 kinds of hand gestures. In the end, the final output is adjusted by an adaptive decision.
Convolutional neural network (CNN) can extract gesture features to adapt various mutations. It can overcome light and shadow, blur noises, hand rotation and other factors under adequate sample conditions. The proposed LHGR system based on deep learning have two input-paths for color images and depth maps. The two paths learn the low-resolution features at beginning, and then concatenate the low-resolution features to learn RGBD high-resolution features. The advantage is that it can suppress the problem of the inaccurate alignment pixels between color images and deep images, and it can also reduce the parameter number of the model. In addition, we use multi-resolution features to classify the hand gestures, therefor, the proposed model has stronger ability for smaller, farther, and blurrier images. During the training stage, we trained the proposed CNN model using a dataset that contained various mutations of loose hand gestures to make CNN have the ability to classify loose hand gestures. In the experiments, we compared the results of the proposed CNN model with many different CNN architectures; the mAP of the model we proposed is up to 0.997333. The proposed method not only enables better and more efficiently use of color images and depth images, but also have better accuracy for lower-quality images (even if the training dataset lacks of the lower-quality images), which the mAP still has a value of 0.662222 for the 10×10 image dataset. As mentioned above, the proposed method not only has reliability in the scaling and rotation of gestures, but allows the lower resolution images as the inputs. Therefore, the proposed CNN model is suitable for LHGR system.
關鍵字(中) ★ 手勢辨識
★ 人機互動
★ 電腦視覺
★ 影像處理
★ 卷積神經網路
★ 深度學習
關鍵字(英) ★ Hand Gesture Recognition
★ Human-Computer Interaction
★ Computer Vision
★ Image Processing
★ Convolutional Neural Networks
★ Deep Learning
論文目次 中文摘要 i
Abstract iii
誌謝 v
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1. Motivation 1
1.2. Overview of this study 4
1.2.1. Loose hand gesture recognition based on relational features using a depth sensor 4
1.2.2. A CNN-based loose hand gesture recognition using RGB-D images 5
1.3. Organization of this dissertation 6
Chapter 2 Related Works 7
2.1. Hand detection 7
2.2. Hand feature extraction 9
2.2.1. Shaped-based 9
2.2.2. 3D model-based 11
2.2.3. Skeleton-based 12
2.2.4. Relational features 13
2.3. Gesture classification 14
2.4. Deep learning 16
Chapter 3 Loose hand gesture recognition based on relational features using a depth sensor 20
3.1. The proposed method 20
3.1.1. Hand detection 20
3.1.2. Feature extraction 22
A. Local features 22
B. Global features 24
C. Depth coding 27
3.1.3. Gesture classification 28
3.2. Experiments 31
3.2.1. Standard gesture recognition results 31
3.2.2. Loose gesture recognition results 33
Chapter 4 A CNN-based loose hand gesture recognition using RGB-D images 39
4.1. The proposed method 39
4.1.1. Training data preparation 39
4.1.2. The proposed neural network architecture 41
A. Network in network 41
B. Single shot multibox detector 43
C. The proposed CNN model 45
4.1.3. Loss function 47
4.2. Experiments 48
4.2.1. CNN with input RGB-D images 49
4.2.2. CNN with multi-resolution features 52
4.2.3. Compared with the other popular CNN models 56
Chapter 5 Conclusions 58
5.1. Loose hand gesture recognition based on relational features using a depth sensor 58
5.2. A CNN-based loose hand gesture recognition using RGB-D images 59
References 61
參考文獻 [1] J. P. Wachs, M. Kolsch, H. Stern, and Y. Edan, “Vision-based hand-gesture applications,” ACM Communications, vol.54, no.2, pp.60-71, 2011.
[2] J.-M. Guo, Y.-F. Liu, C.-H. Chang, and H.-S. Nguyen, “Improved hand tracking system,” IEEE Trans. on Circuits and Systems for Video Technology, vol.22, no.5, pp.693-701, 2012.
[3] A. Malima, E. Ozgur, and M. Cetin, “A fast algorithm for vision-based hand gesture recognition for robot control,” in Proc. IEEE 14th Signal Processing and Communications Applications, Antalya, Turkey, Apr.17-19, 2006, pp.1-4.
[4] P. P?awiak, T. Sosnicki, M. Niedzwiecki, Z. Tabor, and K. Rzecki, “Hand body language gesture recognition based on signals from specialized glove and machine learning algorithms,” IEEE Trans. on Industrial Informatics, vol.12, pp.1104-1113, 2016.
[5] N. Tubaiz, T. Shanableh, and K. Assaleh, “Glove-based continuous Arabic sign language recognition in user-dependent mode,” IEEE Trans. on Human-Machine Systems, vol.45, pp.526-533, Aug. 2015.
[6] A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a single still image,” Int. Journal of Computer Vision, vol.76, pp.53-69, Jan. 2008.
[7] Y. Zhang, Z. Xiong, Z. Yang, and F. Wu, “Real-time scalable depth sensing with hybrid structured light illumination,” IEEE Trans. on Image Processing, vol.23, no.1, pp.97-109, Jan. 2014.
[8] S. Foix, G. Alenya, and C. Torras, “Lock-in Time-of-Flight (ToF) cameras: a survey,” IEEE Sensors Journal, vol.11, pp.1917-1926, Sept. 2011.
[9] H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: Structured-light versus time-of-flight Kinect,” Computer Vision and Image Understanding, vol.139, pp.1-20, Oct. 2015.
[10] C. D. Mutto, P. Zanuttigh, and G. M. Cortelazzo, “TOF cameras and stereo systems: comparison and data fusion,” in TOF Range-Imaging Cameras, F. Remondino and D. Stoppa, Ed. Germany: Springer-Verlag Berlin Heidelberg, 2013, pp.177-202.
[11] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with Microsoft Kinect sensor: A review,” IEEE Trans. on Cybernetics, vol.43, no.5, pp.1318-1334, Oct. 2013.
[12] J. Hong, E. S. Kim, and H.-J. Lee, “Rotation-invariant hand posture classification with a convexity defect histogram,” in Proc. 2012 IEEE Int. Symp. on Circuits and Systems, Seoul, South Korea, May 20-23, 2012, pp.774-777.
[13] A. Erol, G. Bebis, M. Nicolescu, R.D. Boyle, and X. Twombly, “A review on vision-based full DOF hand motion estimation,” in Proc. 2005 IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.75-82.
[14] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Efficient model-based 3D tracking of hand articulations using Kinect,” in Proc. 22nd British Machine Vision Conf., Dundee, UK, Aug.29-Sept.2, 2011, pp.1-11.
[15] S. D. Duncan, “Gesture, verb aspect, and the nature of iconic imagery in natural discourse,” Gesture, vol.2, pp.183-206, Jan. 2002.
[16] K. Emmorey and S. Casey, “Gesture, thought and spatial language,” in Spatial Language, K.R. Coventry and P. Olivier Ed. Springer, Dordrecht, 2002, pp.87-101.
[17] R. E. Scherr, “Gesture analysis for physics education researchers,” Physical Review Special Topics - Physics Education Research, vol.4, pp.1-9, Jan. 2008.
[18] D. Rempel, M. J. Camilleri, and D. L. Lee, “The design of hand gestures for human-computer interaction: lessons from sign language interpreters,” Int. Journal of Human-Computer Studies, vol.72, pp.728-735, 2014.
[19] Y. Fang, K. Wang, J. Cheng, and H. Lu, “A real-time hand gesture recognition method,” in Proc. 2007 IEEE Int. Conf. on Multimedia and Expo, Beijing, China, July 2-5, 2007, pp.995-998.
[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, “SSD: Single shot multibox detector,” in Proc. 14th European Conf. on Computer Vision, Amsterdam, Netherlands, Oct.8-16, 2016, pp.21-37.
[21] P. M. Roth and M. Winter, Survey of Appearance-based Methods for Object Recognition, Ph.D. dissertation, Institute for Computer Graphics and Vision, Graz Univ. of Tech., Graz, Austria, 2008.
[22] M. Kolsch and M. Turk, “Robust hand detection,” in Proc. Sixth IEEE Int. Conf. on Automatic Face and Gesture Recognition, Seoul, South Korea, May 19, 2004, pp.614-619.
[23] M. Jones and P. Viola, Fast Multi-view Face Detection, Technical Report TR2003-96, MERL, July 2003.
[24] Y. R. Wang, W. H. Lin, and L. Yang, “A novel real time hand detection based on skin-color,” in Proc. 2013 IEEE 17th Int. Symp. on Consumer Electronics, Zhubei City, Taiwan, June 3-5, 2013, pp.141-142.
[25] A. Mittal, A. Zisserman, and P. H. Torr, “Hand detection using multiple proposals,” in Proc. the 22nd British Machine Vision Conf., Dundee, UK, Aug.29-Sept.2, 2011, pp.1-11.
[26] C. Li and K. M. Kitani, “Pixel-level hand detection in ego-centric videos,” in Proc. 2013 IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, June 23-28, 2013, pp.3570-3577.
[27] K. K. Biswas and S. K. Basu, “Gesture recognition using Microsoft Kinect,” in Proc. 5th Int. Conf. on Automation, Robotics and Applications, Wellington, New Zealand, Dec.6-8, 2011, pp.100-103.
[28] H. Du and T. To, Hand Gesture Recognition using Kinect, Ph.D. dissertation, Dept. Elect. and Computer Eng., Boston Univ., MA, 2011.
[29] D. Ramirez-Giraldo, S. Molina-Giraldo, A. M. Alvarez-Meza, G. Daza-Santacoloma, and G. Castellanos-Dominguez, “Kernel based hand gesture recognition using kinect sensor,” in Proc. of the 17th Symp. on Image, Signal Processing, and Artificial Vision, Antioquia, Colombia, Sept.12-14, 2012, pp.158-161.
[30] J. M. Teixeira, B. Reis, S. Macedo, and J. Kelner, “Open closed hand classification using kinect data,” in Proc. of the 14th Symp. on Virtual and Augmented Reality, Rio Janeiro, Brazil, May 28-31, 2012, pp.18-25.
[31] G.-F. He, S.-K. Kang, W.-C. Song, and S.-T. Jung, “Real-time gesture recognition using 3D depth camera,” in Proc. 2nd Int. Conf. on Software Engineering and Service Science, Beijing, China, July 15-17, 2011, pp.187-190.
[32] S.-I. Joo, S.-H. Weon, and H.-I. Choi, “Real-time depth-based hand detection and tracking,” The Scientific World Journal, vol.2014, Article ID.284827, pp.1-17, 2014.
[33] Z. Zafrulla, H. Brashear, T. Starner, H. Hamilton, and P. Presti, “American sign language recognition with the Kinect,” in Proc. 13th Int. Conf. on Multimodal Interfaces, Alicante, Spain, Nov.14-18, 2011, pp.279-286.
[34] V. Frati, D. Prattichizzo, “Using Kinect for hand tracking and rendering in wearable haptics,” in Proc. 2011 IEEE World Haptics Conf., Istanbul, Turkey, June 21-24, 2011, pp.317-321.
[35] E. Ohn-Bar and M. M. Trivedi, “Hand gesture recognition in real time for automotive interfaces: A multimodal vision-based approach and evaluations,” IEEE Trans. on Intelligent Transportation Systems, vol.15, no.6, pp.2368-2377, Dec. 2014.
[36] S. Qin, X. Zhu, Y. Yang, and Y. Jiang, “Real-time hand gesture recognition from depth images using convex shape decomposition method,” Journal of Signal Processing Systems, vol.74, pp.47-58, Jan. 2014.
[37] M. Park, M. M. Hasan, J. Kim, and O. Chae, “Hand detection and tracking using depth and color information,” in Proc. of the 2012 Int. Conf. on Image Processing, Computer Vision, and Pattern Recognition, Las vegas, NV, July 16-19, 2012, pp.779-785.
[38] R. Feng, C. Perez, H. Zhang, “Towards transferring grasping from human to robot with RGBD hand detection,” in Proc. 14th Conf. on Computer and Robot Vision, Edmonton, AB, Canada, May 16-19, 2017, pp.285-291.
[39] A. P. Dhawan, Medical Image Analysis, New Jersey, John Wiley & Sons, 2003.
[40] L. Dung and M. Mizukawa, “Fast hand feature extraction based on connected component labeling, distance transform and hough transform,” Journal of Robotics and Mechatronics, vol.21, no.6, pp.726-738, 2009.
[41] C. Manresa, J. Varona, R. Mas, and F. J. Perales, “Hand tracking and gesture recognition for human-computer interaction,” Electronic Letters on Computer Vision and Image Analysis, vol.5, no.3, pp.96-104, 2005.
[42] Z. Ren, J. Yuan, and Z. Zhang, “Robust hand gesture recognition based on finger-earth mover′s distance with a commodity depth camera,” in Proc. of the 19th ACM int. Conf. on Multimedia, Scottsdale, AZ, Nov.28-Dec.1, 2011, pp.1093-1096.
[43] Z. Ren, J. Yuan, J. Meng, and Z. Zhang, “Robust part-based hand gesture recognition using Kinect sensor,” IEEE Trans. on Multimedia, vol.15, no.5, pp.1110-1120, Aug. 2013.
[44] C. Wang, Z. Liu, and S.-C. Chan, “Superpixel-based hand gesture recognition with Kinect depth camera,” IEEE Trans. on Multimedia, vol.17, no.1, pp.29-39, Jan. 2015.
[45] P. Doliotis, V. Athitsos, D. Kosmopoulos, and S. Perantoni, “Hand shape and 3-D pose estimation using depth data from a single cluttered frame,” in Proc. 8th Int. Symp. on Visual Computing, Rethymnon, Crete, Greece, July 16-18, 2012, pp.148-158.
[46] M. Maisto, M. Panella, L. Liparulo, and A. Proietti, “An accurate algorithm for the identification of fingertips using an RGB-D camera,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol.3, pp.272-283, 2013.
[47] B. Feng, H. Luo, Y. Wu, X. Wang, and W. Liu, “Robust hand gesture recognition based on enhanced depth projection maps (eDPM),” in Proc. 8th Int. Conf. on Wireless Communications & Signal Processing, Yangzhou, China, Oct.13-15, 2016, pp.1-5.
[48] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Markerless and efficient 26-DOF hand pose recovery,” in Proc. 10th Asian Conf. on Computer Vision, Queenstown, New Zealand, Nov.8-12, 2010, pp.744-757.
[49] I. Oikonomidis, N. Kyriazis, A. A. Argyros, “Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints,” in Proc. 2011 IEEE Int. Conf. on Computer Vision, Barcelona, Spain, Nov.6-13, 2011, pp.2088-2095.
[50] N. Kyriazis, I. Oikonomidis, and A. Argyros, A GPU-powered Computational Framework for Efficient 3D Model-based Vision, Technical Report TR420, ICE-FORTH, July 2011.
[51] J. Kennedy and R. Eberhart, “Particle swam optimization,” in Proc. 1995 IEEE Int. Conf. on Neural Networks, Piscataway, New Jersey, Nov.27-Dec.1, 1995, pp. 1942-1948.
[52] M. de La Gorce, D. Fleet, and N. Paragios. “Model-based 3d hand pose estimation from monocular video,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.33, no.9, pp.1793-1805, 2011.
[53] M. Madadi, S. Escalera, A. Carruesco, C. Andujar, X. Baro, and J. Gonzalez, “Occlusion aware hand pose recovery from sequences of depth images,” in Proc. 12th IEEE Int. Conf. on Automatic Face & Gesture Recognition, Washington, DC, May 30- June 3, 2017, pp.230-237.
[54] C. Keskin, F. Kirac, Y. E. Kara, and L. Akarun, “Real time hand pose estimation using depth sensors,” in Proc. 2011 IEEE Int. Conf. on Computer Vision Workshops, Barcelona, Spain, Nov.6-13, 2013, pp.1228-1234.
[55] C. Keskin, F. Kirac, Y. Kara, and L. Akarun, “Hand pose estimation and hand shape classification using multilayered randomized decision forests,” in Proc. 12th European Conf. on Computer Vision, Florence, Italy, Oct.7-13, 2012, pp.852-863.
[56] C.-Y. Fan, M.-H. Lin, T.-F. Su, S.-H. Lai, and C.-H. Yu, “3D hand skeleton model estimation from a depth image,” in Proc. 14th IAPR Int. Conf. on Machine Vision Applications, Tokyo, Japan, May 18-22, 2015, pp.489-492.
[57] M. Abdelnaby, M. A. Elazem, H. A. Aly, and A. Kaboudan, “Augmented reality maintenance training with Intel depth camera,” in Proc. 2017 Int. Conf. on Machine Vision and Information Technology, Singapore, Feb.17-19, 2017, pp.116-122.
[58] Q. D. Smedt, H. Wannous, and J.-P. Vandeborre, “Skeleton-based dynamic hand gesture recognition,” in Proc. 2016 IEEE Conf. on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, June 26- July 1, 2016, pp.1206-1214.
[59] H. Liang, J. Yuan, J. Lee, L. Ge, and D. Thalmann, “Depth-based hand pose segmentation with Hough random forest,” IEEE Trans. on Cybernetics, pp.1-15, Dec. 2017.
[60] L. U. T. Hoang, V. T. Pham, and J.-N. Hwang, “An effective 3d geometric relational feature descriptor for human action recognition,” in Proc. of 2012 IEEE RIVF Int. Conf. on Computing and Communication Technologies, Research, Innovation, and Vision for the Future, Ho Chi Minh City, Vietnam, Feb.27-Mar.1, 2012, pp.1-6.
[61] X. Tian and J. Fan, “Joints kinetic and relational features for action recognition,” Signal Processing, vol.142, pp.412-422, Jan. 2018.
[62] A. Zweng and M. Kampel, “Performance evaluation of an improved relational feature model for pedestrian detection,” in Proc. 2013 IEEE Int. Workshop on Performance Evaluation of Tracking and Surveillance, Clearwater, FL, Jan.15-17, 2013, pp.53-60.
[63] R. A. Elsayed and M. I. Abdalla, “Hybrid method based on multi-feature descriptor for static sign language recognition,” in Proc. of the 8th IEEE Int. Conf. on Intelligent Computing and Information Systems, Cairo, Egypt, Dec.5-7, 2017, pp.98-105.
[64] Y. Li, “Hand gesture recognition using Kinect,” in Proc. 2012 IEEE 3rd Int. Conf. on Software Engineering and Service Science, Beijing, China, June 22-24, 2012, pp.196-199.
[65] P. Doliotis, A. Stefan, C. Mcmurrough, D. Eckhard, and V. Athitsos, “Comparing gesture recognition accuracy using color and depth information,” in Proc. of the 4th Int. Conf. on PErvasive Technologies Related to Assistive Environments, Heraklion, Crete, Greece, May 25-27, 2011, no.20, pp.1-7.
[66] M. Giulio, F. Dominio, and P. Zanuttigh, “Hand gesture recognition with leap motion and kinect devices,” in Proc. 2014 IEEE Int. Conf. on Image Processing, Paris, France, Oct.27-30, 2014, pp.1565-1569.
[67] M. A. Almasre and H. Al-Nuaim, “Recognizing Arabic sign language gestures using depth sensors and a KSVM classifier,” in Proc. 8th Conf. of Computer Science and Electronic Engineering, Colchester, UK, Sept.28-30, 2016, pp.146-151.
[68] W. Lu, Z. Tong, and J. Chu, “Dynamic hand gesture recognition with leap motion controller,” IEEE Signal Processing Letters, vol.23, pp.1188-1192, Sept. 2016.
[69] C. Liu, Y.-Y. Chen, and L.-C. Fu, “Robust dynamic hand gesture recognition system with sparse steric haar-like feature for human robot interaction,” in Proc. 55th Annual Conf. of the Society of Instrument and Control Engineers of Japan, Tsukuba, Japan, Sept.20-23, 2016, pp.148-153.
[70] Y. LeCun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, and D. Henderson, “Handwritten digit recognition with a back-propagation network,” in Proc. Advances in Neural Information Processing Systems, Lake Tahoe, NV, Nov.26-29, 1990, pp.396-404.
[71] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of The IEEE, vol.86, no.11, pp.2278-2323, 1998.
[72] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proc. Advances in Neural Information Processing Systems, Lake Tahoe, NV, Dec.3-6, 2012, pp.1097-1105.
[73] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol.15, no.1, pp.1929-1958, 2014.
[74] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional networks for feature learning,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, Jun.13-18, 2010, pp.2528-2535.
[75] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Proc. European Conf. on Computer Vision, Zurich, Switzerland, Sep.8-11, 2014, pp.818-833.
[76] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, Jun.7-12, 2015, pp.3431-3440.
[77] P. Molchanov, S. Gupta, K. Kim, and J. Kautz, “Hand gesture recognition with 3D convolutional neural networks,” in Proc. 2015 IEEE Conf. on Computer Vision and Pattern Recognition Workshops, Boston, MA, June 7-12, 2015, pp.1-7.
[78] L. Ge, H. Liang, J. Yuan, and D. Thalmann, “Robust 3D hand pose estimation in single depth images: from single-view CNN to multi-view CNNs,” in Proc. 2016 IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, Nevada, June 26-July 1, 2016, pp.3593-3601.
[79] M. Han, J. Chen, L. Li, and Y. Chang, “Visual hand gesture recognition with convolution neural network,” in Proc. of the 17th IEEE/ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Shanghai, China, May 30-June 1, 2016, pp.287-291
[80] P. Barros, S. Magg, C. Weber, and S. Wermter, “A multichannel convolutional neural network for hand posture recognition,” in Proc. of 24th Int. Conf. on Artificial Neural Networks, Hamburg, Germany, Sept.15-19, 2014, pp.403-410.
[81] X. Chai, Z. Liu, F. Yin, Z. Liu, and X. Chen, “Two streams recurrent neural networks for large-scale continuous gesture recognition,” in Proc. of 23rd Int. Conf. on Pattern Recognition, Cancun, Mexico, Dec.4-8, 2016, pp.31-36.
[82] F. Mueller, D. Mehta, O. Sotnychenko, S. Sridhar, D. Casas, and C. Theobalt, “Real-time hand tracking under occlusion from an egocentric RGB-D sensor,” in Proc. 2017 IEEE Int. Conf. on Computer Vision Workshops, Venice, Italy, Oct.22-29, 2017, pp.1284-1293.
[83] I. M. Bullock, J. Borras, and A. M. Dollar, “Assessing assumptions in kinematic hand models: A review,” in Proc. of 2012 4th IEEE RAS & EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, Roma, Italy, June 24-27, 2012, pp.139-146.
[84] S. Cobos, M. Ferre, and S. Uran, “Efficient human hand kinematics for manipulation tasks,” in Proc. of IEEE Int. Conf. on Intelligent Robots and Systems, Nice, France, Sept.22-26, 2008, pp.22-26.
[85] P. Cerveri, E. De Momi, N. Lopomo, G. Baud-Bovy, R. M. L. Barros, and G. Ferrigno, “Finger kinematic modeling and real-time hand motion estimation,” Annals of Biomedical Engineering, vol.35, no.11, pp.1989-2002, Nov. 2007.
[86] D. Dragulescu, V. Perdereau, M. Drouin, L. Ungureanu, and K. Menyhardt, “3D active workspace of human hand anatomical model,” Biomedical Engineering Online, vol.6, no.15, pp.1-12, Jan. 2007.
[87] P. W. Brand and A. Hollister, Clinical Mechanics of The Hand, 3rd ed., St. Louis, Mosby, Aug. 1999.
[88] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proc. of Int. Conf. on Learning Representations, Banff, Canada, Apr.14-16, 2014, pp.1-10.
[89] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. for Learning Representations, San Diego, CA, May 7-9, 2015, pp.1-14.
[90] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc. of 2015 IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, June 7-12, 2015, pp.1-9.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2018-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明