博碩士論文 105521601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:52.14.213.94
姓名 歐海珊(Muhammad Awais Hussain)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用Golomb Rice編碼完成無損心電圖壓縮演算法之晶片架構與實現
(VLSI Implementation of ECG Compression Algorithm using Golomb Rice Coding)
相關論文
★ 即時的SIFT特徵點擷取之低記憶體硬體設計★ 即時的人臉偵測與人臉辨識之門禁系統
★ 具即時自動跟隨功能之自走車★ 應用於多導程心電訊號之無損壓縮演算法與實現
★ 離線自定義語音語者喚醒詞系統與嵌入式開發實現★ 晶圓圖缺陷分類與嵌入式系統實現
★ 語音密集連接卷積網路應用於小尺寸關鍵詞偵測★ G2LGAN: 對不平衡資料集進行資料擴增應用於晶圓圖缺陷分類
★ 補償無乘法數位濾波器有限精準度之演算法設計技巧★ 可規劃式維特比解碼器之設計與實現
★ 以擴展基本角度CORDIC為基礎之低成本向量旋轉器矽智產設計★ JPEG2000靜態影像編碼系統之分析與架構設計
★ 適用於通訊系統之低功率渦輪碼解碼器★ 應用於多媒體通訊之平台式設計
★ 適用MPEG 編碼器之數位浮水印系統設計與實現★ 適用於視訊錯誤隱藏之演算法開發及其資料重複使用考量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著技術的進步,生物醫學領域也經歷了劇烈的變化。近年來,物聯網和可穿戴技術正在以巨大的速度改變著生物醫學設備領域。隨著生物醫學資料如心電圖 (ECG) 監測系統的增加,在面對不同疾病進行診斷時,通常會產生大量的資料。為了儲存這些大量的資料,需要龐大的儲存空間,將導致整個系統的價格非常昂貴。而使用壓縮演算法可以減少儲存空間。本文對一種低功耗的心電圖壓縮方法進行了VLSI實現,壓縮演算法是基於Golomb編碼與自適應性的線性預測方法相結合,Golomb編碼是以熵編碼和線性自適應性方法進行預測工作。本文使用MIT-BIH心律失常資料庫作為輸入資料進行測試,其中包含了兩個身體部位的心電資料,本文使用的壓縮演算法能夠達到2.77 的壓縮倍率,由於該演算法為了減少儲存空間,同時進行了不同的運算,因此在設計硬體設計時可利用此特點以管線化或平行化的方式來減少硬體資源,並運作於高時脈頻率上。本文使用Xilinx Artix-7 FPGA 實現了心電訊號壓縮演算法的設計, 並對 VLSI 設計進行了兩種不同的實現,即時資料處理模式和離線資料處理模式,並使用台積電90nm製程技術進行VLSI設計合成。在即時模式上,可工作在1KHz頻率,其功耗為35.3 nW,而離線模式可工作在 160 MHz頻率,其功耗為10.6mW。
摘要(英) With the recent advancements in technology, the biomedical field has been also going through drastic changes. During recent few years, the internet of things and wearable technologies are changing the biomedical equipment industry at a huge pace. With the increase in biomedical data such as Electrocardiography (ECG) monitoring systems, huge data is normally generated while doing a diagnosis of different diseases. To save this large amount of data, huge storage space is required which results in a higher price of the overall system. This storage space can be reduced by using compression algorithm. In this thesis, VLSI implementation of a low power ECG compression method has been performed. Compression algorithm is based on Golomb Rice coding combined with adaptive linear prediction. Golomb Rice code is working as entropy coding and linear adaption prediction is working as prediction part. For testing purposed, the MIT-BIH Arrhythmia Database has been used as input data which contains two-lead recordings. Compression algorithm is able to achieve a compression ratio of 2.77. As the algorithm is efficient in saving storage space while doing different processes so this benefit has been utilized by designing hardware design which uses less number of resources and works at the high clock frequency. ECG compression algorithm design has been implemented for Xilinx Artix-7 FPGA and two different implementations have been performed for VLSI design i.e. real-time data processing and offline data processing. VLSI design has been synthesized for 90nm technology. Real-time processing works at 1 KHz while offline mode implementation works at 160 MHz. Real-time design consumes 35.3 nW of power while the other design conumes 10.6 mW.
關鍵字(中) ★ VLSI
★ ECG壓縮
★ Golomb編碼
★ 自適應性線性預測
關鍵字(英) ★ VLSI
★ ECG Compression
★ Golomb Code
★ Adaptive Linear Prediction
論文目次 CONTENTS
1 Introduction 1
1.1 Trends in Technology 1
1.2 Electrocardiography (ECG) 2
1.3 Data Compression for ECG 3
1.4 Recent Trends in VLSI 5
1.5 Aims and Objectives 5
1.6 Thesis Organization 6
2 Algorithm 7
2.1 Structure of Data Compression Algorithm 7
2.1.1 Prediction 8
2.1.2 Entropy Coding 8
2.2 Working of Algorithm 10
2.2.1 Adaptive Linear Prediction 11
2.2.2 Content Adaptive Golomb Rice Code 14
2.2.3 Data Packaging Format 16
3 Hardware Design 17
3.1 Top Level Flow 17
3.2 Adaptive Linear Prediction 20
3.3 Error Prediction 24
3.4 Golomb Rice Code 25
3.4.1 Data Controlling Part 26
3.4.2 Computation Part 28
3.5 Packaging 30
3.5.1 Data Saving Controller 31
3.5.2 Data Register Controller 31
3.5.3 Counter Controller 31
4 Results And Discussion 33
4.1 Data Selection 33
4.2 FPGA Implementation 34
4.3 VLSI Implementation 37
4.3.1 High-Speed VLSI Design 38
4.3.2 Low-Speed VLSI Design 38
4.4 Performance Comparison for High Speed and Low-Speed VLSI Design 39
4.5 Performance Analysis with Latest Work 41
5 Conclusion And Future Recommendations 44
6 References 47
參考文獻 [1] N. J. Wade and D. Deutsch, “Binaural Hearing—Before and After the Stethophone,” Acoust. Today, vol. 4, no. 3, p. 16, 2008.
[2] R. A. Novelline and L. F. Squire, Squire’s fundamentals of radiology. Harvard University Press, 1997.
[3] J. D. Howell, “Diagnostic technologies: X-rays, electrocardiograms, and CAT scans.,” South. Calif. Law Rev., vol. 65, no. 1, pp. 529–64, Nov. 1991.
[4] “LabVIEW for ECG Signal Processing - National Instruments.” [Online]. Available: http://www.ni.com/tutorial/6349/en/. [Accessed: 13-Apr-2018].
[5] Institute of Health & Wellbeing, “How to record ECG - 12 lead electrode position.” [Online]. Available: https://www.gla.ac.uk/researchinstitutes/healthwellbeing/research/robertsoncentreforbiostatistics/electrocardiology/trainingandsupport/howtorecordecgs/12leadelectrodeposition/. [Accessed: 16-Apr-2018].
[6] American Heart Association, “Holter Monitor,” 2018. [Online]. Available: http://www.heart.org/HEARTORG/Conditions/HeartAttack/DiagnosingaHeartAttack/Holter-Monitor_UCM_446437_Article.jsp#.WtQx94huaUl. [Accessed: 16-Apr-2018].
[7] R. J. Ellis, B. Zhu, J. Koenig, J. F. Thayer, and Y. Wang, “A careful look at ECG sampling frequency and R-peak interpolation on short-term measures of heart rate variability,” Physiol. Meas., vol. 36, no. 9, pp. 1827–1852, 2015.
[8] L. Hejjel and E. Roth, “What is the adequate sampling interval of the ECG signal for heart rate variability analysis in the time domain?,” Physiol. Meas., vol. 25, no. 6, pp. 1405–1411, 2004.
[9] M. S. Alam and N. M. S. Rahim, “Compression of ECG signal based on its deviation from a reference signal using discrete cosine transform,” 2008 Int. Conf. Electr. Comput. Eng., vol. 0, no. December 2008, pp. 20–22, 2008.
[10] I.-C. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of branch prediction via data compression,” ACM SIGPLAN Not., vol. 31, no. 9, pp. 128–137, 1996.
[11] A. S. Lysyak and B. Y. Ryabko, “Time series prediction based on data compression methods,” Probl. Inf. Transm., vol. 52, no. 1, pp. 92–99, 2016.
[12] T. C. Butash and L. D. Davisson, “Adaptive Linear Prediction and Process Order Identification,” in Adaptive Signal Processing, Vienna: Springer Vienna, 1991, pp. 1–67.
[13] C. J. Deepu and Y. Lian, “A low complexity lossless compression scheme for wearable ECG sensors,” Int. Conf. Digit. Signal Process. DSP, vol. 2015–Septe, no. 1, pp. 449–453, 2015.
[14] E. Chua and Wai-Chi Fang, “Mixed bio-signal lossless data compressor for portable brain-heart monitoring systems,” IEEE Trans. Consum. Electron., vol. 57, no. 1, pp. 267–273, Feb. 2011.
[15] D. A. Huffman, “A Method for the Construction of Minimum-Redundancu Codes,” A Method Constr. Minimum-Redundancu Codes, pp. 1098–1102, 1952.
[16] W. H. Press, Numerical recipes?: the art of scientific computing. Cambridge University Press, 2007.
[17] G. -a. Luo, T.-L. Lin, and S.-L. Chen, “Efficient fuzzy-controlled and hybrid entropy coding strategy lossless ECG encoder VLSI design for wireless body sensor networks,” Electron. Lett., vol. 49, no. 17, pp. 1058–1060, 2013.
[18] C. J. Deepu and Y. Lian, “A Joint QRS detection and data compression scheme for wearable sensors,” IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 165–175, 2015.
[19] V. Aggarwal and M. S. Patterh, “ECG compression using Slantlet and lifting wavelet transform with and without normalisation,” Int. J. Electron., vol. 100, no. 5, pp. 626–636, May 2013.
[20] Z. Peric, D. Denic, J. Nikolic, A. Jocic, and A. Jovanovic, “DPCM quantizer adaptation method for efficient ECG signal compression,” J. Commun. Technol. Electron., vol. 58, no. 12, pp. 1241–1250, Dec. 2013.
[21] S. K. Mukhopadhyay, S. Mitra, and M. Mitra, “A lossless ECG data compression technique using ASCII character encoding,” Comput. Electr. Eng., vol. 37, no. 4, pp. 486–497, 2011.
[22] H. J. Oussama EL B’CHARRI*, Rachid LATIF, Azzedine DLIOU, Abdenbi ABENAOU, “An enhanced method of loss less ECG data compression using ASCII character encoding,” pp. 1–5, 2014.
[23] S. Mukhopadhyay, S. Mitra, and M. Mitra, ECG signal compression using ASCII character encoding and transmission via SMS, vol. 8. 2013.
[24] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.,” Circulation, vol. 101, no. 23, pp. E215-20, Jun. 2000.
[25] C. J. Deepu, C.-H. Heng, and Y. Lian, “A Hybrid Data Compression Scheme for Power Reduction in Wireless Sensors for IoT,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 2, pp. 245–254, 2017.
[26] C. J. Deepu, X. Zhang, W. S. Liew, D. L. T. Wong, and Y. Lian, “An ECG-on-Chip with 535 nW/channel integrated lossless data compressor for wireless sensors,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2435–2448, 2014.
[27] S.-L. Chen et al., “A Power-Efficient Mixed-Signal Smart ADC Design With Adaptive Resolution and Variable Sampling Rate for Low-Power Applications,” IEEE Sens. J., vol. 17, no. 11, pp. 3461–3469, Jun. 2017.
[28] C.-I. Ieong, M. Li, M.-K. Law, P.-I. Mak, M. I. Vai, and R. P. Martins, “A 0.45 V 147–375 nW ECG Compression Processor With Wavelet Shrinkage and Adaptive Temporal Decimation Architectures,” IEEE Trans. Very Large Scale Integr. Syst., vol. 25, no. 4, pp. 1307–1319, Apr. 2017.
[29] Y. Zou et al., “An energy-efficient design for ECG recording and R-peak detection based on wavelet transform,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 62, no. 2, pp. 119–123, 2015.
[30] J. Y. Lee and S. N. Hwang, “A lifting wavelet based lossless and lossy ECG compression processor for wireless sensors,” Trans. Korean Inst. Electr. Eng., vol. 14, no. 6, pp. 1–11, 2017.
?
指導教授 蔡宗漢(Tsung-Han Tsai) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明