博碩士論文 105521095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:18.217.128.108
姓名 徐冠忠(Guan-Jhong Syu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於C/X頻段之互補式金氧半導體低功耗寬頻接收機前端電路暨X頻段氮化鎵發射機之研製
(Implementations on C/X-band CMOS Low Power Wideband Receiver Front-end and X-band GaN Transmitter)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文分別利用tsmcTM 180 nm CMOS及WINTM 250 nm GaN 製程設計寬頻接收機及發射機。論文中共有四顆晶片,其中以CMOS製程進行製作的包含C/X頻段寬頻低雜訊放大器與接收機,而X頻段高功率的功率放大器與混頻器則以GaN製程來進行設計。
利用三線圈組實現C/X 頻段之寬頻低雜訊放大器在元件選用上利用電流密度來進行電晶體尺寸有挑選,並利用PMOS來做為互補式的電晶體達到電路轉導的提升,在輸入端利用源極與閘極的電感形成變壓器來提升電路在高頻的增益,而在輸出端則是採用三線圈組來提升輸出的匹配與增益的平坦度。量測得到增益為11.97 dB,頻寬為0.5 ~ 12.1 GHz,雜訊指數為3.89 dB,線性度IIP3為-2 dBm,整體功耗為12.74 mW,面積僅為0.55×0.68 mm2為現有C/X頻段之寬頻接收機中面積最小的。
應用於C/X頻段之寬頻接收機,採用第一顆的寬頻低雜訊放大器,並利用具有兩個共振點的寬頻巴倫來進行非平衡與平衡的轉換,混頻器部分採用雙平衡的被動混頻器架構能提高本地源與其他端點的隔離度,相較於主動式混頻器沒有而功耗且較適合用於低功耗的設計,在基頻部分利用兩級的轉阻放大器來進行基頻的放大與中頻頻段的定義,並在輸出端加入共模回授來減少製程變異而導致的電壓不匹配。量測轉換增益為26.8 dB,頻寬為4.1 ~ 11.7 GHz,雙邊帶雜訊指數為6.3 dB,線性度IIP3為-14.4 dBm,整體功耗為31.89 mW。
具2.37 W輸出功率之氮化鎵功率放大器應用於X頻段,利用一推二的方式來提升功率放大器的增益,在穩定度部分利用串聯RC與並聯RL來提升電路的穩定度,其中並聯RL在電路給與偏壓時能減少使用過大的電阻而導致的直流偏移的問題,在輸出端採用低阻抗的傳輸線來進行二元功率結合以減少輸出端的損耗。量測增益為14.07 dB,頻寬為8.55 ~ 13.9 GHz,輸出功率1-dB壓縮點為29.3 dBm,飽和輸出功率為33.75 dBm,功率附加效益為19.57%。
應用於X頻段之氮化鎵次諧波電阻式混頻器,在本地源端利用電容、電感元件取代傳統馬遜巴倫大幅地降低晶片的使用面積,在電晶體的尺寸挑選利用輸出功率與本地源所需功率的取捨來進行最佳化挑選,因採用次諧波來進行混頻能減少本地源的所需的頻率與功率,並考量大信號操作下電路的阻抗變化與增益擴張的現象,大幅降低本地源所需的輸入功率,且本電路為單端輸入輸出,所以不須額外的巴倫較適合用於系統的整合。模擬轉換損耗為11.73 dB,頻寬為9.05 ~ 11.25 GHz,輸出功率1-dB壓縮點為2.62 dBm,本地源所需功率為5 dBm。
摘要(英) This thesis presents a wideband receiver (Rx) front-end and transmitter (Tx) in tsmcTM 180 nm and WINTM 250 nm GaN technologies. Four chips including C/X band wideband low-noise amplifiers and receivers are designed and fabricated in CMOS process. X band high power amplifier and mixer are designed and implemented in 250 nm GaN process.
The first chip is a wideband low noise amplifier (LNA) which was designed by using gate-source transformer and complementary transistors, which has higher gm than that of common source amplifier. The second stage is designed using a trifilar transformer which coupled the gate, source and drain inductors to reduce the chip size and provide wideband output matching. The measured peak gain is 11.97 dB over a 3-dB bandwidth from 0.5 to 12.1 GHz with minimum noise figure (NF) of 3.89 dB. The measured P1dB is -12 dBm and IIP3 is -2 dBm. The total power consumption is 12.74 mW. The chip size is only 0.55×0.68 mm2.
The second chip is a C/X band receiver which integrated previous LNA, a balun, a mixer and a trans-impedance amplifier (TIA). The balun is an inductively coupled resonator to provide wideband unbalanced to balanced transformation. The mixer was designed with as passive double balanced topology to enhance the LO/RF isolation with no power consumption. A two-stage TIA was used as baseband amplifier to increase the gain in receive chain. In addition, the TIA with RC shunt feedback can define the channel bandwidth of the receiver. The measured peak conversion gain is26.8 dB over a 3-dB bandwidth from 4.1 to 11.7 GHz with minimum double-sideband noise figure (NFdSB) of 6.3 dB. The measured P1dB is -24 dBm and IIP3 is -14.4dBm. The total power consumption is 31.89 mW. The chip size is 1.313 ×0.831 mm2.
The third chip is a GaN high power amplifier (HPA). The HPA was used low impedance transmission line to reduce loss of the output stage. The analysis of the oscillation regarding even and odd mode was conducted. The HPA was added appropriate components to prevent the oscillations. The measured peak gain is 14.07 dB over a 3-dB bandwidth from 8.55 to 13.9 GHz. The measured OP1dB is -29.3 dBm and Psat is 33.75 dBm. The measured power added efficiency is 19.57 %. The chip size is 2.24×1.736 mm2.
The fourth chip is a sub-harmonic resistive mixer which adopted a lumped element Marchand Balun to reduce the chip size. The properly selections the transistor size and bias conditions make the sub-harmonic mixer operate at low LO power with high output power. The conversion loss of the mixer is 11.73 dB over a 3-dB bandwidth from 9.05 to 11.25 GHz. The simulated OP1dB is 2.62 dBm under LO power of 5 dBm. The chip size is 2.24×1.736 mm2.
關鍵字(中) ★ 氮化鎵
★ 互補式金氧半導體
★ 低雜訊放大器
★ 功率放大器
★ 接收機
★ 混頻器
★ 調變器
關鍵字(英) ★ GaN
★ CMOS
★ LNA
★ PA
★ Receiver Front-end
★ Mixer
★ Modulator
論文目次 摘要 I
Abstract III
誌謝 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究現況 1
1-2 研究成果 2
1-3 章節簡介 3
第二章 應用於C/X頻段之寬頻低雜訊放大器 4
2-1 研究動機 4
2-2 電路架構與設計 5
2-2-1電晶體尺寸與偏壓挑選 5
2-2-2輸入端變壓器 7
2-2-3輸出寬頻匹配 10
2-3 電路模擬與量測結果 14
2-4 結果與討論 20
第三章 應用於C/X頻段之寬頻接收機 22
3-1 研究動機 22
3-2 電路架構與設計 22
3-2-1巴倫設計 24
3-2-2混頻器設計 27
3-2-3轉阻放大器設計 30
3-2-4共模回授設計 31
3-2-5輸出緩衝器設計 32
3-3 電路模擬與量測結果 32
3-4結果與討論 41
第四章 應用於X頻段之氮化鎵功率放大器 43
4-1 研究動機 43
4-2 電路架構與設計 44
4-2-1輸出級設計 44
4-2-2驅動級設計 45
4-3 電路模擬與量測結果 47
4-4結果與討論 52
第五章 應用於X頻段之氮化鎵次諧波電阻式混頻器 56
5-1 研究動機 56
5-2 電路架構與設計 56
5-2-1巴倫設計 56
5-2-2電晶體尺寸與偏壓挑選 59
5-3 電路模擬與量測考量 62
5-4結果與討論 68
第六章 結論 69
6-1電路總結 69
6-2未來方向 70
附錄A 應用於OOK調變之可調式脈衝產生器 71
A-1 研究動機 71
A-2 電路架構與設計 72
A-2-1正脈波電路設計 72
A-2-2負脈波電路設計 73
A-3 電路模擬與量測考量 75
A-4結果與討論 77
參考文獻 79
參考文獻 [1] Heng Zhang, Xiaohua Fan, and Edgar Sanchez Sinencio, “A low-power, linearized, ultra-wideband LNA design technique,” IEEE J. Solid-State Circuits., vol. 44, no. 2, Feb. 2009.
[2] Po-Yu Chang and Shawn S. H. Hsu, “A compact 0.1–14-GHz ultra-wideband low-noise amplifier in 0.13-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, Oct. 2010.
[3] Yo-Sheng Lin, Chien-Chin Wang, Guan-Lin Lee, and Chih-Chung Chen , “High-performance wideband low-noise ampli?er using enhanced-match input network,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 3, Mar 2014
[4] Chang-Tsung Fu, Chien-Nan Kuo and Stewart S. Taylor , “Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching, ” IEEE Trans. Microw. Theory Tech., vol. 58, no. 4, Apr 2010.
[5] Terry Yao, Michael Q. Gordon, Keith K. W. Tang, Kenneth H. K. Yau, Ming-Ta Yang, Peter Schvan, and Sorin P. Voinigescu, “Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio, ” IEEE J. Solid-State Circuits., vol. 42, no. 5, May. 2007.
[6] Rong-Fu Ye, Tzyy-Sheng Horng, and Jian-Ming Wu, “Two CMOS dual-feedback common-gate low-noise amplifiers with wideband input and noise matching, ”IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, Oct. 2013.
[7] Yo-Sheng Lin , Jin-Fa Chang, and Shey-Shi Lu, “Analysis and design of CMOS distributed amplifier using inductively peaking cascaded gain cell for UWB systems, ”IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, Oct. 2011.
[8] Chun-Hsing Li, Chien-Nan Kuo , and Ming-Ching Kuo, “ A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-m CMOS, ” IEEE Trans. Microw. Theory Tech., vol. 60, no. 11, Nov. 2012.
[9] Hao Wu, Ning-Yi Wang, Yuan Du, and Mau-Chung Frank Chang, “A blocker-tolerant current mode 60-GHz receiver with 7.5-GHz bandwidth and 3.8-dB minimum NF in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 3, Mar. 2015.
[10] Sven Karsten Hampel, Oliver Schmitz, Marc Tiebout, Koen Mertens, and Ilona Rolfes, “9-GHz wideband CMOS RX and TX front-ends for universal radio applications, ” IEEE Trans. Microw. Theory Tech, vol. 60, no. 4, Apr. 2012.
[11] L. Cai and R. Harjani, “1–10GHz inductorless receiver in 0.13 μm CMOS, ” in Proc. IEEE Radio Freq. Integr. Circuits Sym., Jun 2009, pp. 61-64.
[12] Jusung Kim and Jose Silva-Martinez, “Low-power, low-cost CMOS direct-conversion receiver front-end for multistandard applications, ” IEEE J. Solid-State Circuits., vol. 48, no. 9, Sep. 2013.
[13] Stephan C. Blaakmeer, Eric A. M. Klumperink, Domine M. W. Leenaerts, and Bram Nauta, “The blixer, a wideband balun-LNA-I/Q-mixer topology,” IEEE J. Solid-State Circuits., vol. 43, no. 12, Dec. 2008.
[14] Leonardo Pantoli, Giorgio Leuzzi, Alberto Santarelli, and Fabio Filicori, “Stability analysis and design criteria of paralleled-device power amplifiers under large-signal regime,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 5, May. 2016.
[15] Mtsuru Mochizuh, Masatoshi Nakayama, Yukinobu Tarui,Yasushi Itoh, Seiich Tsuji, and Tadashi Takagi , “Nonlinear analysis of f0/2 loop oscillation of high power amplifiers,” IEEE MTT-S International Microwave Symposium, May. 1995.
[16] Dongmin Kim, Dong-Ho Lee, Sanghoon Sim, Laurence Jeon, and Songcheol Hong, ‘‘ An X-band switchless bidirectional GaN MMIC amplifier for phased array systems, ” IEEE Microw. Wireless Compon. Lett., vol. 24, no., 12, Dec. 2014.
[17] Roberto Quaglia, Vittorio Camarchia, and Marco Pirola, ‘‘ Dual-band GaN MMIC power amplifier for microwave backhaul applications, ” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, Jun. 2014.
[18] Philippe Dennler, Friedbert van Raay, Matthias Seelmann-Eggebert, Rudiger Quay, and Oliver Ambacher , “Modeling and realization of GaN-based dual-gate HEMTs and HPA MMICs for Ku-band applications, ” in 2011 IEEE MTT-S Int.Microwave Symp. Dig., Jun. 2011, June 2011. pp. 1-4.
[19] Rajkumar Santhakumar, Brian Thibeault, Masataka Higashiwaki, Stacia Keller, Zhen Chen, Umesh K. Mishra and Robert A. York, “ Two-stage high-gain high-power distributed amplifier using dual-gate GaN HEMTs, ” IEEE Trans. Microw. Theory Tech., vol., 59, no., 8, Aug. 2011.
[20] Chih-Sheng Yeh, Hsuan-Ling Kao, Jiun-Yi Ke, Bo-Wen Wang, Cheng-Lin Cho,Hsien-Chin Chiu and Li-Chun Chang, ‘‘A 3.5 GHz antiparallel diode pair mixer in GaN-on-Si HEMT technology, ” High Speed Intelligent Communication Forum (HSIC), May. 2012.
[21] Thuy T. Nguyen, Kohei Fujii, and Anh-Vu Pham, ‘‘Highly linear distributed mixer in 0.25-μm enhancement-mode GaAs pHEMT technology, ” IEEE Microw. Wireless Compon. Lett., vol. 27, no., 12, Dec. 2017.
[22] Ping-Chun Yeh, Wei-Cheng Liu, and Hwann-Kaeo Chiou, ‘‘Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element high-pass/band-pass balun, ” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, Feb.2005.
[23] M. van Heijningen, J.A Hoogland, A.P. de Hek, and F.E. van Vliet, ‘‘6-12 GHz double-balanced image-reject mixer MMIC in 0.25μm AlGaN/GaN Technology, ”in 2014 EuMIC European Microwave Integrated Circuit Conference, Dec 2014. pp. 65-68.
[24] Praveen Gunturi, Nuri W. Emanetoglu, and David E. Kotecki , “A 250-Mb/s data rate IR-UWB transmitter using current-reused technique,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 11, Nov. 2017.
[25] Xiang Gao, Eric A. M. Klumperink, Mounir Bohsali, and Bram Nauta, “A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2,” IEEE J. Solid-State Circuits., vol. 44, no. 12, Dec 2009
[26] M. Shen, Y. Z. Yin, H. Jiang, T. Tian, and J. H. Mikkelsen, “A 3–10 GHz IR-UWB CMOS pulse generator with 6 mW peak power dissipation using a slow-charge fast-discharge technique,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 9, Sep. 2014.
[27] M. Shen, Y. Z. Yin, H. Jiang, T. Tian, O. K. Jensen, and J. H. Mikkelsen, “A 0.76 pJ/pulse 0.1-1 Gpps microwatt IR-UWB CMOS pulse generator with adaptive PSD control using a limited monocycle precharge technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 8, Aug. 2015.
[28] Y. Choi, Y. Kim, H. Hoang, and F. Bien, “A 3.1-4.8-GHz IR-UWB all-digital pulse generator with variable channel selection in 0.13 μm CMOS technology,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 5, May. 2012.
[29] 蕭仲華 "應用於C/X頻段之低功耗寬頻前端電路接收機暨寬頻低雜訊放大器之研製," 碩士論文,電機工程學系, 國立中央大學, 民國105年.
[30] 陳品豪 "低功耗I/Q寬頻接收機前段電路應用於C/X頻帶," 碩士論文,電機工程學系, 國立中央大學, 民國106年.
[31] 林佳慧 "應用單向化預失真、傳輸型變壓器與二元功率結合技術於C/X頻段之寬頻全積體功率放大器之研製," 碩士論文,電機工程學系, 國立中央大學, 民國105年.
[32] 張凱彥 "應用傳輸線型變壓器於C/X頻段之CMOS功率放大器與Ku頻段之GaN功率放大器之研製," 碩士論文,電機工程學系, 國立中央大學, 民國106年.
指導教授 邱煥凱(Hwann-Keao Chiou) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明