博碩士論文 104521125 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:18.116.62.45
姓名 林晏平(Yen-Pin Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵高電子遷移率電晶體之 電流暫態特性研究
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) AlGaN/GaN HEMTs已被廣泛用於RF功率放大器,特別是應用於基地台功率發射器,因為以GaN為基底的寬能隙材料有高電子遷移率與高崩潰電場特性。然而在GaN HEMTs的缺陷中產生的電流的散射(dispersion)是很重要的議題。此論文中,在AlGaN/GaN HEMTs模擬元件中加入不同的缺陷進行暫態模擬分析,並將AlGaN/GaN HEMTs在開啟狀態、不同靜態工作點與不同基底溫度下施加應力,進行電流暫態測量分析。
模擬元件為AlGaN/GaN HEMT結構,若在模擬元件的SiO2和AlGaN界面或GaN中加入會捕捉電子的缺陷(acceptor-like trap),則在持續開啟狀態下,會有電流增加或減少現象,但若加入會釋放電子的缺陷(donor-like trap),則會有電流增加趨勢。
論文中測量的商用元件AlGaN/GaN HEMTs,元件尺寸是閘極長度(gate length)與閘極寬度(Gate width)分別為0.25 μm與125 μm,並且成長在4吋SiC基板上,以SiN為鈍化層而且有源耦合場板(source-coupled field-plate)。開啟狀態下的電流暫態測量包含兩個部分。一個是在固定靜態工作點進行100 s的電流暫態測量,另一個為由不同工作點切換回ID = 100 mA/mm、VDS = 28 V時的靜態工作點進行100 s的電流暫態測量。為了分析陷阱活化能(EA),所有的電流暫態測量皆會在25°C、40°C、50°C、60°C,4個不同溫度下進行。
元件在固定靜態工作點進行電流暫態測量觀察,若此工作點的 ID = 427 mA/mm,會有明顯的通道載子被捕捉效應(trapping effect),而若工作點的 ID = 33~238 mA/mm,有通道載子被捕捉或釋放效應(trapping & detrapping effect)。但在25°C時,若工作點的ID = 33 ~ 345 mA/mm,會跟元件在高溫下(40°C、50°C、60°C)時有著不同的暫態特性。
另外元件由不同偏壓狀態切換回ID = 100 mA/mm、VDS = 28 V狀態進行100 s的電流暫態測量。若切換前狀態的ID大於100 mA/mm,則100 s內有明顯的通道載子釋放效應;若切換前狀態的ID小於100 mA/mm,則100 s內有明顯的通道載子被捕捉效應。
元件由ID = 100 mA/mm、VDS = 28 V 切換至不同偏壓狀態進行100 s的電流暫態測量。若切換後狀態的ID = 343 ~ 427 mA/mm或ID = 33 ~ 87 mA/mm,則100 s內有明顯的通道載子被捕捉效應;若切換後狀態的ID = 145 ~ 238 mA/mm,100 s內有明顯的通道載子被捕捉與釋放效應。
論文中也在模擬元件中加入適當的缺陷去擬合量測的電流暫態結果,可以有相當高的吻合度。因此,藉由模擬可推測元件中缺陷的位置、能階與濃度。論文中所有的暫態電流分析,萃取出的陷阱活化能有些是負值,有些值偏小,由此可推論論文中通道載子被捕捉或釋放效應,與溫度不太相關,可能是穿隧行為(tunneling behaviors)所造成的。所有不同靜態工作點、不同元件基底溫度的持續開啟狀態下的電流暫態測量都顯示複雜的通道載子被捕捉或釋放效應。此研究觀察電流暫態結果跟GaN HEMT用在功率放大器的應用有密切相關,因此進一步的深入研究是必要的。
摘要(英) AlGaN/GaN HEMTs have been widely used in RF power amplifiers, especially in base station power transmitters, because GaN-based wide energy gap materials have high electron mobility and high breakdown electric field characteristics. However, the dispersion of current generated in the defects of GaN HEMTs is an important issue.In this paper, different defects were added to the AlGaN/GaN HEMTs analog device for transient simulation analysis, and the AlGaN/GaN HEMTs were subjected to stress in the on state, different static operating points and different substrate temperatures for current transient measurement analysis.
The analog device is an AlGaN/GaN HEMT structure. If acceptor-like traps are added to the SiO2 and AlGaN interface or GaN of the analog device, current may increase or decrease in a continuously on state, but if add donor-like traps, there will be a tendency for the current to increase.
The commercial device AlGaN/GaN HEMTs measured in the paper have a gate length and a gate width of 0.25 μm and 125 μm, respectively, and grow on a 4 inch SiC substrate, passivated by SiN layer and have source-coupled field-plate. The current transient measurement in the on state consists of two parts. One is a current transient measurement of 100 s at a fixed quiescent operating point, and the other is a current transient of 100 s from a quiescent operating point when switching from different operating points to ID = 100 mA/mm and VDS = 28 V. To analyze trap activation energy(Ea), all current transient measurements were performed at 25°C, 40°C, 50°C and 60°C.
The device is subjected to current transient measurement at a fixed quiescent operating point. If the ID of the operating point is 427 mA/mm, there will be a significant trapping effect, and if the working point ID = 33~238 mA/mm, there will be trapping and detrapping effect. However, at 25°C, if the ID of the working point = 33 ~ 345 mA/mm, it will have different transient characteristics with the device at higher temperature(40°C, 50°C, 60°C).
In addition, the devices are switched from different bias states to ID = 100 mA/mm and VDS = 28 V for 100 s current transient measurement. If the ID of the state before switching is greater than 100 mA/mm, there is a significant detrapping effect within 100 s, but if the ID of the state before switching is less than 100 mA/mm, there is a significant trapping effect within 100 s. The device is switched from ID = 100 mA/mm and VDS = 28 V to different bias states for 100 s current transient measurement. If the ID of the switched state is 343 ~ 427 mA/mm or ID = 33 ~ 87 mA/mm, there will be obvious trapping effect within 100 s, if the ID of the switch state is 145 ~ 238 mA/mm within 100 s, there are obvious trapping and detrapping effects.
In this paper, the appropriate defects are also added to the analog device to fit the measured current transient results, which can have a fairly high degree of coincidence. Therefore, the position, energy level and concentration of defects in the device can be estimated by simulation. In all the transient current analysis in this paper, the trap activation energy extracted is somewhat negative, and some values are too small. It can be inferred that the trapping and detrapping effects in this paper, which is not related to temperature, but may be tunneling. Current transient measurements at all static operating points and continuously open states of different devices substrate temperatures show complex trapping and detrapping effects. This study observes that current transient results are closely related to the application of GaN HEMTs in power amplifiers, so further in-depth studies are necessary.
關鍵字(中) ★ 氮化鋁鎵
★ 氮化鎵
★ 高電子遷移率電晶體
★ 電流暫態特性
關鍵字(英)
論文目次 中文摘要 IV
Abstract VI
致謝 VIII
圖目錄 XI
表目錄 XVIII
第一章 緒論 1
1.1前言 1
1.2 AlGaN/GaN HEMTs暫態分析相關研究 2
1.3 論文之研究動機與目的 11
1.4 論文架構 12
第二章AlGaN/GaN HEMTs之不同缺陷影響暫態特性模擬 14
2.1前言 14
2.2 元件模擬背景 14
2.3元件結構與直流特性模擬 17
2.4元件電流暫態特性模擬 18
2.5結論 25
第三章AlGaN/GaN HEMTs固定偏壓下之暫態特性分析 27
3.1前言 27
3.2元件結構與直流特性 27
3.3固定閘極偏壓下電流暫態特性 28
3.3.1電流變化分析 28
3.3.2元件缺陷分析 33
3.4模擬分析 38
3.5結論 39
第四章AlGaN/GaN HEMTs閘極偏壓改變下之暫態特性分析 41
4.1前言 41
4.2元件結構與直流特性 41
4.3閘極偏壓改變下電流暫態特性 41
4.3.1 Device 1閘極偏壓改變下之暫態特性分析 41
4.3.1.1電流變化分析 41
4.3.1.2元件缺陷分析 47
4.3.2 Device 2閘極偏壓改變下之暫態特性分析 54
4.3.2.1電流變化分析 54
4.3.2.2元件缺陷分析 63
4.3.3 Device 3閘極偏壓改變下之暫態特性分析 75
4.3.3.1電流變化分析 75
4.3.3.2元件缺陷分析 90
4.4模擬分析 109
4.5結論 110
第五章 結論與未來展望 112
參考文獻 114
參考文獻 1. Umesh K. Mishra, Likun Shen, Thomas E. Kazior, and Yi-Feng Wu,” GaN-Based RF Power Devices and Amplifiers,” Proceedings of the IEEE, Volume: 96, Issue: 2, pp. 287-305, 2008.
2. K. Madjour and H. Lin, “RF GaN Technology & Market Analysis: Applications, Players, Devices & Substrates2010-2020,” Market & technology Report, 2014.
3. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L.F.Eastman,“Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol. 85, No. 6, p. 3222-3233, 1999.
4. Nando Kaminski, Oliver Hilt,” SiC and GaN devices – wide bandgap is not all the same.” IET Circuits, Devices & Systems, Volume: 8, Issue: 3, pp. 227-236, 2014.
5. Jungwoo Joh and Jesus A. del Alamo, “Impact of Electrical Degradation on Trapping Characteristics of GaN High Electron Mobility Transistors,” IEEE IEDM, pp. 1-4, 2008.
6. Jungwoo Joh and Jesus A. del Alamo, ”A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors,” IEEE Transactions on Electron Device, vol. 58, NO. 1, pp. 132-140, 2011
7. Donghyun Jin and Jesus A. del Alamo,” Methodology for the Study of Dynamic ON-Resistance in High-Voltage GaN Field-Effect Transistors,” IEEE Transactions on Electron Device, vol. 60, NO. 10, pp. 3190 – 3196, 2013.
8. Davide Bisi, Matteo Meneghini, Carlo de Santi, Alessandro Chini, Michael Dammann, Peter Bruckner, Michael Mikulla, Gaudenzio Meneghesso and Enrico Zanoni,” Deep-Level Characterization in GaN HEMTs-Part I:Advantages and Limitations of Drain Current Transient Measurements,” IEEE Transactions on Electron Device, Vol. 60, NO. 10, pp. 3166 - 3175, 2013.
9. Li Zhu, Koon Hoo Teo and Qun Gao,” Dynamic On-resistance and Tunneling Based De-trapping in GaN HEMT,” IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 717 – 720, 2015
10. Walter Wohlmuth, Ming-Hung Weng, Che-Kai Lin, Jhih-Han Du, Shin-Yi Ho, Tung-Yao Chou, Shuan-Ming Li, Clement Huang, Wei-Chou Wang, Wen-Kai Wang,” AlGaN/GaN HEMT Development Targeted for X-band Applications,” IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), pp. 1-4, 2013.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2018-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明