參考文獻 |
[1] S. Gupte, O. Masoud, R. F. K. Martin, and N. P. Papanikolopoulos, “Detection and classification of vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 3, no. 1, pp. 37-47, Mar. 2002.
[2] M. Cristani, M. Farenzena, D. Bloisi, and V. Murino, “Background subtraction for automated multisensor surveillance: A comprehensive review,” EURASIP J. Adv. Signal Process., vol. 2010, no. 1, Aug. 2010, Art. ID 343057.
[3] A. Lai and N. H. C. Yung, “A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence,” in Proc. IEEE Int. Symp. Circuits Syst., May 1998, vol. 4, pp. 241-244.
[4] S. Messelodi, C. M. Modena and M. Zanin, “A computer vision system for the detection and classification of vehicles at urban road intersections,” Pattern Anal. Appl., vol. 8, no. 1/2, pp. 17-31, Sep. 2005.
[5] T. Gao, Z.-G. Liu, W.-C. Gao, and J. Zhang, “A robust technique for background subtraction in traffic video,” in Advances in Neuro-Information Processing. Berlin, Germany: Springer-Verlag, 2009, pp. 736-744.
[6] B. T. Morris and M. M. Trivedi, “Learning, modeling, and classification of vehicle track patterns from live video,” IEEE Trans. Intell. Transp Syst., vol. 9, no. 3, pp. 425-437, Sep. 2008.
[7] J. Zheng, Y. Wang, N. L. Nihan, and M. E. Hallenbeck, “Extracting roadway background image: Mode-based approach,” J. Transp. Res. Board, vol. 1944, no. 1, pp. 82-88, 2006.
[8] T. Bouwmans, F. El Baf, and B. Vachon, “Background modeling using mixture of Gaussians for foreground detection—A survey,” Recent Patents Comput. Sci., vol. 1, no. 3, pp. 219-237, Nov. 2008.
[9] L.-W. Tsai, J.-W. Hsieh, and K.-C. Fan, “Vehicle detection using normalized color and edge map,” IEEE Trans. Image Process., vol. 16, no. 3, pp. 850-864, 2007.
[10] G. Zhang, R. P. Avery, and Y. Wang, “Video-based vehicle detection and classification system for real-time traffic data collection using uncalibrated video cameras,” Transp. Res. Rec., J. Transp. Res. Board, vol. 1993, no. 1, pp. 138-147, 2007.
[11] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts, and shadows in video streams,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 10, pp. 1337-1342, Oct. 2003.
[12] A. Jazayeri, H. Cai, J. Y. Zheng, and M. Tuceryan, “Vehicle detection and tracking in car video based on motion model,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 2, pp. 583-595, Jun. 2011.
[13] N. Srinivasa, “Vision-based vehicle detection and tracking method for forward collision warning in automobiles,” in Proc. IEEE Intell. Veh. Symp., 2002, vol. 2, pp. 626-631.
[14] M. Bertozzi, A. Broggi, and S. Castelluccio, “A real-time oriented system for vehicle detection,” J. Syst. Archit., vol. 43, no. 1-5, pp. 317-325, Mar. 1997.
[15] N. Blanc, B. Steux, and T. Hinz, “LaRASideCam: A fast and robust vision-based blindspot detection system,” in Proc. IEEE Intell. Veh. Symp., 2007, pp. 480-485.
[16] Y.-M. Chan, S.-S. Huang, L.-C. Fu, and P.-Y. Hsiao, “Vehicle detection under various lighting conditions by incorporating particle filter,” in Proc. IEEE ITSC, 2007, pp. 534-539.
[17] X. Zhang, N. Zheng, Y. He, and F. Wang, “Vehicle detection using an extended hidden random field model,” in Proc. 14th IEEE ITSC, 2011, pp. 1555-1559.
[18] Z. Sun, G. Bebis, and R. Miller, “Monocular precrash vehicle detection: features and classifiers,” IEEE Trans. Image Process., vol. 15, no. 7, pp. 2019-2034, Jul. 2006.
[19] M. Cheon, W. Lee, C. Yoon, and M. Park, “Vision-based vehicle detection system with consideration of the detecting location,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 3, pp. 1243-1252, Sep. 2012.
[20] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection using Gabor filters and support vector machines,” in Proc. 14th Int. Conf. DSP, 2002, vol. 2, pp. 1019-1022.
[21] W. Liu, X. Wen, B. Duan, H. Yuan, and N. Wang, “Rear vehicle detection and tracking for lane change assist,” in Proc. IEEE Intell. Veh. Symp., 2007, pp. 252-257.
[22] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 34, no. 3, pp. 334-352, Aug. 2004.
[23] Berthold K. P. Horn , Brian G. Schunck, Determining optical flow, Artif. Intell., vol.17, pp.185-203, Aug. 1981
[24] V. Vapnik, The Nature of Statistical Learning Theory. New York, NY, USA: Springer-Verlag, 2000.
[25] T. Kohonen, “An introduction to neural computing,” Neural Netw., vol. 1, no. 1, pp. 3-16, 1988.
[26] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of online learning and an application to boosting,” in Computational Learning Theory. Berlin, Germany: Springer-Verlag, pp. 23-37, 1995.
[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 580-587, 2014.
[28] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis., pp. 1440-1448, 2015.
[29] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” in IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.
[30] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, “Selective Search for Object Recognition,” in Int. J. Comput. Vis., vol. 104, no. 2, pp. 154-171, 2013.
[31] Joyce Xu, “Deep Learning for Object Detection: A Comprehensive Review,” https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9
[32] Z. Zivkovic, “Improved adaptive Gaussian mixture model for background subtraction,” in Proceedings of the 17th International Conference on Pattern Recognition, vol. 2, no. 2, pp. 28–31, 2004.
[33] C. L. Zitnick, P. Dollar, “Edge Boxes: Locating Object Proposals from Edges.” Comput. Vis. ECCV, vol. 8693, pp. 391-405, Sep. 2014.
[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678, ACM, 2014.
[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2016.
[36] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015. |