博碩士論文 105521066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:142 、訪客IP:18.221.145.52
姓名 游騰雁(Teng-Yen Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高感度乾式腦波電極設計
(Design of High-Sensitive Dry Electrodes for Biopotential Measurements)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 心電圖、腦電波、肌電波等臨床上重要的診斷儀器,通常使用濕式生理量測電極,而傳統濕式電極必須在量測部位給予導電凝膠,不僅有導電阻抗變化的問題,也會造成受試者的不適。尤其是腦電波的量測,濕式電極會將受試者的頭髮弄髒,導致量測上的不方便與不舒服。因此,本研究致力於設計一套對身體訊號有高敏感度的乾式電極,藉由設計高阻抗的前端電路來提高整體系統的量測電阻係數,利用主動屏蔽(active shield)來隔絕外在雜訊,並提供良好共模抑制比(CMRR)與阻抗匹配,以穩定生理訊號的接收。本論文所設計的乾式電極已經成功在低接觸的情況下量測出心電圖與腦電波訊號。針對乾式電極與貼片電極所接收到的訊號進行比較,兩者的方均根差值(RMSE)為0.28 mV,驗證本論文所開發的乾式電極已經可以對生理訊號進行實測,具有臨床應用的價值。
摘要(英) Electrocardiogram (ECG), electroencephalography (EEG), electromyogram (EMG), and etc. are important diagnosis instruments in clinics. Traditional instruments usually utilize wet type electrode for measuring biomedical signals. However, the use of wet type electrodes has to smear electrolyte gel on the measurement sites. The application of electrolyte gel is neither comfortable nor convenient. Especially, in EEG measurements, the electrolyte gel will inevitably make subject’s hairs dirty. This study aims to develop a high sensitive dry electrode for the measurement of electrophysiological signals. We have designed active electrode to increase the impedance in the frontal-end circuit. By providing active shield, external noise was decreased and common mode reject (CMRR) was increased to provide better impedance matching. The proposed dry electrode has proved its feasibility in the low-contact condition. Comparing the signal quality between our dry electrode and traditional wet-type electrode, the root-mean-square error (RMSE) is 0.28 mV which demonstrates the feasibility of our dry electrode for clinical applications.
關鍵字(中) ★ 乾式電極
★ 腦電波
★ 心電圖
關鍵字(英) ★ dry electrode
★ EEG
★ ECG
論文目次 摘要 i
Abstract ii
Acknowledgment iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 身體訊號起源 2
1-3 研究動機與目的 3
1-4 論文章節架構 4
第二章 原理介紹 5
2-1 電極文獻及介紹 5
2-1-1 濕式電極 8
2-1-2 乾式電極 9
2-2 腦電訊號 14
2-2-1 腦電波類別 14
2-2-2 量測位置與方法 16
2-3 腦波誘發電位 19
2-3-1 視覺誘發電位簡介 19
2-3-2 閃光視覺誘發電位 23
2-3-3 圖形視覺誘發電位 24
2-4 濾波器 25
2-4-1 類比濾波器 25
2-4-2 數位濾波器 27
2-4-3 Butterworth濾波器 29
2-5 腦機介面 31
第三章 研究設計與方法 33
3-1 系統設計 33
3-1-1 電極設計 33
3-1-2 系統結合 35
3-2 研究方法 38
3-2-1 心電訊號測試流程 38
3-2-2 alpha波能量測試流程 39
3-2-3 視覺誘發測試流程 40
第四章 實驗結果與討論 41
4-1 實驗環境與限制條件 41
4-2 實驗數據 42
4-2-1 實驗一:心電訊號測試 42
4-2-2 實驗二:alpha波能量測試 44
4-2-3 實驗三:SSVEP測試 46
4-3 對照數據 51
4-4 實驗結果討論 52
第五章 結論與未來展望 55
參考文獻 57
參考文獻 [1] ???? ????????, “????? ???????? ????????? ?????????? ??? ??????????? ??? ? 12 ??????????”, ??O?O???, December 2016.
[2] School of Health Sciences, University of Nottingham
取自https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function
/chest_leads.php。
[3] George E. Burch, Nicholas P. DePasquale, A history of electrocardiography, 2 Ed, Norman Publishing, San Francisco, California, April 1990.
[4] W. Bruce Fye, “A history of the origin, evolution, and impact of electrocardiography”, The American Journal of Cardiology, vol. 73(13), pp. 937-949, May 1994.
[5] Engelmann, T. W.: Pfluger’s Arch. ges. Physiol. 17:68, 1878.
[6] Kazamel M., Warren P. P., “History of electromyography and nerve conduction studies: A tribute to the founding fathers.”, Journal of Clinical Neuroscience, vol. 43, pp. 54-60, September 2017.
[7] Peter A. Karth, et al., “Electrooculogram”, EyeWiki, October 2015.
取自http://eyewiki.aao.org/Electrooculogram。
[8] Mario Tudor, et al., “Hans Berger(1873-1941) – The history of electroencephalography”, Acta Medica Croatica, vol. 59(4), pp. 307-313, February 2005.
[9] Narisa N. Y. Chu, “Surprising Prevalence of Electroencephalogram Brain-Computer Interface to Internet of Things”, IEEE Consumer Electronics Magazine, vol. 6(2), pp. 31-39, April 2017.
[10] Pedro Miguel Rodrigues, et al., “Electroencephalogram Signal Analysis in Alzheimer’s Disease Early Detection”, International Journal of Reliable and Quality E-Healthcare, vol. 7(1), 2018.
[11] George E. Bergey, et al., “Electrocardiogram Recording with Pasteless Electrodes”, IEEE Transactions on Bio-medical Engineering, vol. 18(3), pp. 206-211, May 1971.
[12] Tadayuki Matsuo, et al., “A Barium-Titanate-Ceramics Capacitive-Type EEG Electrode”, IEEE Transactions on Biomedical Engineering, pp. 299-300, July 1973.
[13] Babak A. Taheri, et al., “A Dry Electrode for EEG Recording”, Electroencephalography and Clinical Neurophysiology, vol. 90, pp. 376-383, December 1993.
[14] John G. Webster, “Medical Instrumentation Application and Design”, 4 Ed, John Wiley & Sons, Inc., USA, 2010.
[15] Yu M. Chi, Gert Cauwenberghs, “Wireless Non-contact EEG/ECG Electrodes for Body Sensor Networks”, IEEE 2010 International Conference on Body Sensor Network, pp. 297-301, July 2010.
[16] Enrique Spinelli, et al., “A capacitive electrode with fast recovery feature”, Physiological Measurement, vol. 33, pp. 1277-1288, July 2012.
[17] Sohmyung Ha, et al., “Integrated Circuits and Electrode Interfaces for Noninvasive Physiological Monitoring”, IEEE Transactions on Biomedical Engineering, vol. 61(5), pp. 1522-1537, May 2014.
[18] Luis Fernando Nicolas-Alonso, Jaime Gomez-Gil, “Brain Computer Interfaces, a Review”, Sensors, vol. 12(2), pp. 1211-1279, January 2012.
[19] 莊活力:癲癇與癲癇手術。取自http://www.tcmg.com.tw/神外www/seizure/c1.htm
[20] Yu Mike Chi, et al., “Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review”, IEEE Reviews in Biomedical Engineering, vol. 3, pp. 106-119, December 2010.
[21] Guangli Li, et al., “Novel-passive-ceramic-based-semi-dry-electrodes-for-recording”, Sensors and Actuators B: Chemical, vol. 237, pp. 167-178, June 2016.
[22] Rui Ma, et al., “A Stretchable Electrode Array for Non-invasive, Skin-Mounted Measurement of Electrocardiography (ECG), Electromyography (EMG) and Electroencephalography (EEG)”, IEEE Engineering in Medicine and Biology Society, pp. 6405-6408, November 2010.
[23] Jamie Rae Schofield, “Electrocardiogram Signal Quality Comparison Between a Dry Electrode and a Standard Wet Electrode over a Period of Extended Wear”, Cleveland State University, Master of Education degree, May 2012.
[24] Stephen Lee, John Kruse, “Biopotential Electrode Sensors in ECG/EEG/EMG Systems”, Analog Devices, 2008.
[25] Enrique Spinelli, Marcelo Haberman, “Insulating electrodes: a review on biopotential front ends for dielectric skin-electrode interfaces”, Physiological Measurement, vol. 31, pp. 183-198, September 2010.
[26] A. Searle, L. Kirkup, “A direct comparison of wet, dry and insulating bioelectric recording electrodes”, Physiological Measurement, vol. 21, pp. 271-283, 2000.
[27] Ernst Niedermeyer, Fernando Lopes da Silva, Electroencephalography, 5 Ed, Lippincott Williams & Wilkins, Philadelphia, USA, 2005.
[28] Jaakko Malmivuo, Robert Plonsey, Bioelectromagnetism, Oxford University Press, New York, January 1995.
[29] Petra Ritter, et al., “Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex”, Human Brain Mapping, vol.30(4), pp.1168-1187, April 2009.
[30] Elif Kirmizi-Alsan, et al., “Comparative analysis of event-related Potentials during Go/NoGo and CPT: decomposition of electrophysiological markers of response inhibition and sustained attention”, Brain Research, vol. 1104, pp. 114-128, August 2006.
[31] Ian Gold, “Does 40-Hz Oscillation Play a Role in Visual Consciousness?”, Consciousness and Cognition, vol. 8, pp. 186-195, 1999.
[32] Herbert H. Jasper, “The ten-twenty electrode system of the International Federation.”, Electroenceph. clin. Neurophysiol., vol. 10, pp. 371-375, 1958.
[33] G. E. Chatrian, et al., “Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity.”, American Journal of EEG Technology, vol. 25(2), 1985.
[34] Valer Jurcak, et al., “10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-base positioning systems”, Neuro Image, vol. 34, pp. 1600-1611, January 2007.
[35] George H. Klem, et al., “The ten-twenty electrode system of the International Federation”, Electroencephalography and Clinical Neurophysiology, vol. 52, pp. 3-6, 1999.
[36] Akos Jobbagy, Sandor Varga, Biomedical Instrumentation, Typotex, Magyarorszag, March 2014.
[37] Karl E. Misulis, Toufic Fakhoury, Spehlmann’s Evoked Potential Primer, 3 Ed, Butterworth-Heinemann, May 2001.
[38] Keith H. Chiappa, Evoked Potentials in Clinical Medicine, 3 Ed, Lippincott-Raven, Philadelphia, USA, 1997.
[39] Korbinian Brodmann, Vergleichende Lokalisationslehre der Grosshirnrinde, Leipzig, Berlin, Germany, August 1909.
[40] Erich E. Sutter, “The brain response interface: communication through visually-induced electrical brain responses”, Journal of Microcomputer Applications, vol. 15, pp. 31-45, 1992.
[41] S. Rinalduzzi, et al., “Variation of visual evoked potential delay to stimulation of central, nasal, and temporal regions of the macula in optic neuritis”, Journal of Neurology, Neurosurgery & Psychiatry, vol. 70(1), pp. 28-35, January 2001.
[42] Francesco Di Russo, et al., “Steady-State VEP and Attentional Visual Processing”, The Cognitive Electrophysiology of Mind and Brain, vol. 11, pp. 257-272, June 2002.
[43] Yijun Wang, “A Practical VEP-Based Brain-Computer Interface”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14(2), pp. 234-239, June 2006.
[44] R. B. Silberstein, et al., “Steady-state visually evoked potential topography during the Wisconsin card sorting test”, Electroencephalography and Clinical Neurophysiology, vol. 96(1), pp. 24-35, January 1995.
[45] J. Vernon Odom, et al., “Visual evoked potentials standard”, Documenta Ophthalmologica, vol. 108, pp. 115-123, 2004.
[46] “Analogue filter”, Wikipedia, April 2018.
取自https://en.wikipedia.org/wiki/Analogue_filter。
[47] Larry D. Paarmann, Design and Analysis of Analog Filters: A Signal Processing Perspective, Kluwer Academic Publisher, USA, 2001.
[48] Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, 3 Ed, Pearson, USA, 2010.
[49] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, California, USA, 1997.
[50] Stephen Butterworth, “On the Theory of Filter Amplifiers”, Experimental Wireless & The Wireless Engineer, vol. 7, pp. 536-541, October 1930.
[51] “Butterworth filter”, Wikipedia, April 2018.
取自https://en.wikipedia.org/wiki/Butterworth_filter。
[52] Max O. Krucoff, et al., “Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation”, Frontiers in Neuroscience, vol. 10, December 2016.
指導教授 李柏磊 審核日期 2018-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明