博碩士論文 985201127 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.145.60.4
姓名 張志聰(Chih-Tsung Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 前額視覺誘發電位擷取方法
(A novel method for the detection of frontal VEP signals)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究創新研發一種電位方式,將電極放置在前額擷取EEG訊號,並且加入梳狀濾波
器在相位編碼中,處理訊號裡的雜訊。此方法是在前額葉(Fpz)上放置電極以擷取視覺誘
發電位(VEP)信號,取代傳統測量方式中使用的枕葉(Oz)區擷取視覺誘發電位。我們將廣
泛的應用在視覺誘發電位的方法,包括穩態視覺誘發電位(SSVEP)、閃光視覺誘發電位
(FVEP)和相位編碼(Phase)來研究,並且比較枕葉(Oz)和前額葉(Fpz)位置的腦波信號。
在傳統擷取腦波枕葉(Oz)位置的方式,實際操作中會受到人的頭髮干擾,且還需額外的
電極來擷取眼動訊號(EOG)並且過濾它。我們提出的方法可以有效地獲得視覺誘發電位和
眼動訊號,並且不需要像在枕葉(Oz)位置需要除去大量頭髮的前置作業準備,我們還可
以減少擷腦波訊號的電極數量。在前額電極擷取腦波訊號可能是設計腦人機介面的一個
重大突破。
摘要(英) This research represents a new electrode positioning on the frontal lobe to collect EEG
signals. Through this we also incorporated comb filter to filter signal noise upon signal
collection. The novel method examine visually evoked potential (VEP) by placing an electrode
on the frontal lobe (Fpz), on the other hand, the traditional method involves placing the
electrode at the mid-occipital location (Oz). We used three different widely used VEP
methods, namely steady-state VEP (SSVEP), flash VEP (FVEP) and Phase and analyze the
brain wave signals from both the Oz and Fpz location. Traditional Oz location of signal
processing involves an extra electrode as well as hair interference. Our frontal novel electrode
placement not only trigger the VEP signal, it also process the EOG signal at the same time
without preparation of hair and addition electrodes. The frontal lobe of positioning electrode to
analyze the VEP signal is a remarkable breakthrough in the BCI system application.
關鍵字(中) ★ 梳狀濾波器
★ 穩態視覺誘發電位
★ 閃光視覺誘發電位
★ 相位編碼
關鍵字(英) ★ Comb filter
★ Steady-state visual evoked potential
★ Flash Visual Evoked Potential
★ Phase encoding
論文目次 List of Contents
中文摘要 ...... i
Abstract ...... ii
致謝 .......iii
List of Figures …………………………………vi
List of Tables ……………………………………viii
Chapter 1 Introduction .............. 1
1.1 Motivation and Background ……………………1
1.2 Brain computer interface (BCI) ………2
1.3 Visual stimulator ………………………………… 6
1.4 Types of brain waves …………………………………8
Chapter 2 Fpz and Oz the visual evoked potential of Electrode to Detect
EEG Signals ………………………………….....12
2.1 Subjects and Tasks………….….…12
2.3 Transmission of the VEP throughout the brain ………13
2.4 EEG Extraction Method ……….…………………………………….…..……….15
2.5 Overview of the experiment set up ………………………………….17
Chapter 3 EEG Signal Transduction Pathway and Analytical Methods ………………18
3.1 VEP signals ……………………18
3.2 Fvep ………………………………………20
3.3 SSVEP ……..…………………..…25
3.4 Phase …………………….……………29
3.5 The correct rate of Fpz and Oz …...…………………32
3.6 Results ……..………………………………………………..…..…………….…34
Chapter 4. Using Comb Filter to Improve Phase Signal Extraction …………..……...…35
4.1 Feedback digital comb filter with variable delay………………………35
4.2 Comb filter and signal phase……………………….39
4.3 Choosing α and flickering frequency ……42
4.4 Results ……………………………………………………46
Chapter 5 Conclusion ……………………………47
Reference …………………………………………………………49
Publication List ………………………………………53
參考文獻 Reference
[1] G.P. Pires, “Biosignal Classification for Human Interface with Devices and Surrounding
Environment”, Biosignal classification for human interface with devices and surrounding
environment. 2011 10316/20315
[2] P.W. Dorota, “Visual-evoked potentials in patients with brain circulatory problems”, Int J
Neurosci. 2014;(10):264–269.
[3] G. Schalk, D.J. McFarland, T. Hinterberger, T. Hinterberger, N. Birbaumer, and
Jonathan, “A general-purpose brain-computer interface (BCI) system”, IEEE Transactions on
Biomedical Engineering. 2004:51(6):1034-1043
[4] G. Hacioglu, A. Agar, G .Ozkaya, P. Yargicoglu and S. Gumuslu, “The effect of different
hypertension models on visual evoked potentials”, Int J Neurosci. 2009;(7):1321–1335.
[5] C.T. Chang, Lee, P.L and E.H. Lin, “Variable delay digital comb filter extraction of weak
phase signals for SSVEP”, Biomed Signal Proc Control. 2017;31:211–216.
[6] P.L. Lee, J.J. Sie, Y.J. Liu, C.H. Wu, M.H. Lee, C.H. Shu, P.H. Li, C.W. Sun and K.K,
“Shyu,An SSVEP-actuated brain computer interface using phase-tagged flickeringsequences:
a cursor system”, Ann Biomed. Eng. 38 (7) (2010) 2383–2397.
[7] Y.M. Chi, Y.T. Wang, C .Maier, T.P. Jung and G, “Cauwenberghs. Dry and noncontact
EEG sensors for mobile brain-computer interface”, IEEE Trans Neural Syst Rehab Eng.
2012;20(2):228–235.
[8] Y.M.M. Jahani, “A frequency domain proof for the equivalence of the maximally flat FIR
fractional delay filter and the Lagrange interpolator”, Elsevier. 2011;21(1):13–16.
[9] T.M. Vaughan, D.J. McFarland, G. Schalk, W.A. Samacki, D.J. and E. W. Krusienski,
“The wadsworth BCI research and development program: at home with BCI”, IEEE Trans
Neural Syst Rehab Eng. 2006;14 (2):229–233.
[10] Y.T. Wang, Y. Wang , C.K. Cheng and T.P. Jung, “Measuring steady-state visual evoked
potential from non-hair-bearing areas”, IEEE Eng Med Biol Soc. 2012;(4):1806–1809.
[11] R. Sitaram, A. Caria and N, “Birbaumer. Hemodynamic braincomputer interfaces for
communication and rehabilitation”, Neural Netw. 2009;22:1320–1328.
[12] D.J. Creel, “Visually evoked potentials”, The Organization of the Retina and Visual
System. Webvision; 2016. http://web vision.med.utah.edu/book/electrophysiology/visually-ev
oked-potentials/
[13] S.P. Kelly, E.C. Lalor, R.B. Reilly and J.J. Foxe, “Visual spatial attention tracking using
high density SSVEP data for independent brain-computer communication”, IEEE Trans Neural
Syst Rehab Eng. 2005;13(2):172–178.
[14] G.R. Muller-Putz and G. Pfurtscheller, “Control of an electrical prosthesis with an
SSVEP-based BCI”, IEEE Trans Biomed Eng. 2008;55(1):361–364.
[15] O. Friman, I. Volosyak and A. Graser, “Multiple channel detection of steady-state visual
evoked potentials for brain-computer interfaces”. IEEE Trans Biomed Eng. 2007;54(4):742–750.
[16] R. Ortner, B. Allison, G. Korisek, H. Gaggl and P. Gert, “An SSVEP BCI to control a
hand orthosis for persons with tetraplegia”, IEEE Trans Neural Syst Rehab Eng. 2011;19(1):1–
5.
[17] Z. Wu, “The difference of SSVEP resulted by different pulse duty-cycle”, IEEE Conf
Commun Circuits Syst. 2009; 605–607.
[18] Y.T Wang, Y. Wang, C.K. Cheng and T.P. Jung, “Measuring steady-state visual evoked
potentials from non-hair-bearing areas”, In: 34th Annual International Conference of the IEEE
EMBS; San Diego, CA. 2012.
[19] Y.T. Wang, M. Nakanishi, Y. Wang, C.K. Cheng and T.P. Jung, “An online
braincomputer interface based on SSVEPs measured from nonhair-bearing areas”, IEEE Trans
Neural Syst Rehab Eng. 2016;25(1):14–21.
[20] C.S. Wei, Y.T. Wang, C.T. Lin and T.P. Jung, “Toward non-hair-bearing brain-computer
interfaces for neurocognitive lapse detection”. IEEE Eng Med Biol Soc. 2015:25–29.
[21] C.H. Wu, P.L. Lee, Y.T. Wu, C.M. Cheng, T.C. Yeh, L.T. Ho, M.S. Chang and J.C.
Hsieh, “ICA-based analysis of movement- related modulation on beta activity of single-trial
MEG measurement using spatial and temporal templates”. J Med Biol Eng. 2003;28:155–159.
[22] C.H. Wu, P.L. Lee, C.H. Shu, M.T. Lo, C.Y. Chang and J.C. Hsieh, “Empirical mode
decomposition based approach for inter-trial analysis of olfactory event-related potential features”, Chem Percept. 2012;5(3–4):280–291.
[23] K.K. Shyu, P.L. Lee, Y.J. Liu and J.J. Sie, “Dual-frequency steady-state visual evoked
potential for brain computer interface”, Neurosci Lett. 2010;483(1):28–31.
[24] P.L. Lee, J.C. Hsieh, C.H. Wu,K.K, “Shyn and Y.T. Wu. Brain computer interface using
flash onset and offset visual evoked potentials”, Clin Neurophysiol. 2007;119:605–616.
[25] P.L. Lee, J.J. Sie, Y.J. Liu, M.H. Lee, C.H. Shu, P.H. Li, C.W. Sun and K.K. Shyn,
“An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a
cursor system”, Ann Biomed Eng. 2010;38(7):2383–2397.
[26] L. Bi, J. Lian, k. Jie, R. Lai, Y. Liu, “A speed and direction-based cursor control
systemwith P300 and SSVEP”, Biomedical Signal Processing and Control 14(2014)126–133.
[27] H.Y. Wu, P.L. Lee, H.C. Chang, J.C, “Hsieh, Accounting for phase drifts inSSVEP-based
BCIs by means of biphasic stimulation”, IEEE Trans. Biomed. Eng.58 (5) (2011) 1394–1402.
[28] J.J. Sie, [Research on phase encoding visual stimulator of steady-state visual evoked
potential]. National Central University,PhD Paper, 2014。
[29] Y.J. Liu [Research on Dual-Frequency Steady-State Visual Evoked Potentials Induce
System]. National Central University,PhD Paper, 2014。
指導教授 李柏磊(Po-Lei Lee) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明