博碩士論文 105521098 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.21.105.77
姓名 賴畇茿(Yun-Jhu Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於X/Ka頻段之互補式金氧半導體寬頻中性化功率放大器暨應用低阻抗二元功率結合技術與多蒂架構於X頻帶氮化鎵功率放大器之研製
(Implementations on X/Ka-band CMOS Wideband Unilateralized Power Amplifiers and X-band GaN Power Amplifiers with Low Impedance Binary Power Combining Technique and Doherty Architecture)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文採用tsmcTM 0.18-μm、tsmcTM 90-nm與WINTM 0.25-μm GaN製程設計五顆功率放大器,電路設計上選擇操作於X頻段與Ka頻段,藉由模擬不同製程之電晶體特性,選出最佳之電晶體大小與操作電流密度,結合變壓器形成寬頻匹配與運用多蒂特性使電路效率增加,最後量測電路特性以驗證電路設計之結果。
第一顆與第二顆皆為採用磁耦合變壓器於Ka頻段之90-nm CMOS寬頻功率放大器,此電路為兩級共源級結合中性化電路之設計,輸出與輸入採用磁耦合巴倫器,級間匹配則採用磁耦合變壓器增加電路頻寬,另外,於第二顆設計中加入了預匹配的考量,得以縮小晶片面積與增加頻寬,傳輸增益分別為17.43、14.5 dB,飽和輸出功率分別為14.73 、18.4 dBm,1-dB 增益壓縮點輸出功率分別為10.7、14.5 dBm,晶片面積分別為0.73 (1.41 × 0.405) mm2與0.67 (1.01 × 0.67) mm2。
第三顆使用0.18-m CMOS製程於X頻段之功率放大器,此功率放大器為採用中性化架構之兩級電路再結合A類並聯B類特性,增加電路的1-dB 增益壓縮點輸出功率與效率,輸出端與輸入端皆使用磁耦合巴倫器,級間匹配使用T型匹配增加電路頻寬,傳輸增益為20.1 dB,飽和輸出功率為20.1 dBm,1-dB 增益壓縮點輸出功率為18.4 dBm,加入A類並聯B類電晶體後,改善了最高輸出功率3.8 dBm與功率附加效率3.4%,晶片面積為1.78 (1.95 × 1.13) mm2。
第四顆為0.25-m GaN製程於X頻帶之二元功率結合功率放大器,電路採用兩級共源級架構,輸出端採用兩路並聯以增加輸出功率加上低阻抗結合器減少功率損耗,傳輸增益為16.35 dB,飽和輸出功率分別為33.2 dBm,1-dB 增益壓縮點輸出功率為24.5 dBm,晶片面積分別為3.47 (1.98 × 1.75) mm2。
第五顆為0.25-m GaN製程於X頻帶之多蒂功率放大器,輸出端採用T型匹配取代四分之一波長以縮小面積,輸入端則採用藍基耦合器,傳輸增益為11.8 dB,飽和輸出功率分別為35.9 dBm,功率回退附加效率為39.9 %,功率附加效率最高為41.5 %,晶片面積分別為3.03 (1.73 × 1.75) mm2。
摘要(英) The thesis developed five power amplifiers that were designed in tsmcTM 0.18-μm CMOS, tsmcTM 90-nm CMOS and WINTM 0.25-μm GaN for both X-band and Ka-band operations. The best transistor size and biasing current density of the used transistors were chosen by simulating in different processes. The wideband matching was realized by the magnetically coupling transformer and the enhanced efficiency was realized by using Doherty architecture. Finally, the circuit performance was verified by the measuring small and large signal parameters, such as S-parameters, output power, linearity and modulated signals, etc.,
The first power amplifier was fabricated in tsmcTM 0.18-μm CMOS technology for X-band operation. This two-stage power amplifier adopted the unilateralization technique which was constructed by a class A amplifier in parallel with class B one to increase the overall output 1-dB compression power (OP1dB) and power added efficiency (PAE). The wide operating bandwidth was achieved by using magnetically coupling Balun for the output matching and T-type matching for the inter-stage matching. The measurement results showed a small signal gain of 20.1 dB, the saturated output power (Psat) and OP1dB are 20.1 dBm and 18.4 dBm, respectively. The peak output power and PAE are improved by the amount of 3.8 dB and 3.4%, respectively, while adopted this composited power amplifier architecture. The chip area is 1.78 (1.95×1.13) mm2.
The second and third chips were fabricated in tsmcTM 90-nm CMOS technology for Ka-band operation. Two amplifiers were realized by using unilateralization technique in common-source topology. The input and output matching design followed the previous work and the inter-stage matching was realizes by magnetic transformer.
The third power amplifier applied a pre-matching design to minimize the chip size and increase the operating bandwidth. These power amplifiers displayed the gains of 17.43 dB and 14.5dB, respectively. The saturated output powers were measured to 14.73 dBm and 18.4 dBm. The OP1dB were 10.7dBm and 14.5 dBm, respectively. The chip areas are 0.73 (1.41×0.405) mm2 and 0.67 (1.01×0.67) mm2.
The fourth chip presents an X-band monolithic microwave integrated circuit (MMIC) binary-combining power amplifier in WINTM 0.25-μm GaN technology. The output of the two-stage CS power amplifiers combined two circuit paths to double the output power and the low impedance combiner reduced the power loss. The measured results exhibited a peak gain of 16.35 dB, a saturation output power of 33.2dBm and an OP1dB of 24.5dBm. The chip area is 3.47 (1.98×1.75) mm2. The fourth chip presents an X-band monolithic microwave integrated circuit (MMIC) binary-combining power amplifier in WINTM 0.25-μm GaN technology. The output of the two-stage CS power amplifiers combined two circuit paths to double the output power and the low impedance combiner reduced the power loss. The measured results exhibited a peak gain of 16.35 dB, a saturation output power of 33.2dBm and an OP1dB of 24.5dBm. The chip area is 3.47 (1.98×1.75) mm2.
The last power amplifier also was fabricated in WINTM 0.25-μm GaN technology. A Doherty power amplifier (DPA) adopted a T-type network for the output matching to reduce the chip size and a Lange-coupler for the input matching. The DPA achieved a peak gain of 11.8 dB, a saturation output power of 35.9 dBm, a PAE at 6-dB power back-off of 39.9% and a peak PAE 41.5%. The chip area is 3.03 (1.73×1.75) mm2.
關鍵字(中) ★ 功率放大器
★ 寬頻中性化技術
★ 二元功率結合技術
★ 多蒂架構
關鍵字(英) ★ Power amplifier
★ Wideband unilateralized technique
★ Binary power combining technique
★ Doherty
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1- 研究動機 1
1-2 研究成果 1
1-3 章節簡介 2
第二章 應用磁耦合變壓器暨中性化技術寬頻功率放大器設計 3
2-1 研究現況 3
2-2 磁耦合變壓器簡介 3
2-3 單向化電路與中和化電路 6
2-3-1 電路簡介 7
2-3-2 增益與穩定度之改善 10
2-4 應用於Ka頻帶之差動中性化寬頻功率放大器 13
2-4-1 應用於Ka頻帶之差動中性化寬頻功率放大器設計 13
2-4-2 電路模擬與量測結果 25
2-4-3 結果比較與討論 34
2-5 應用於Ka 頻帶之中性化暨預匹配寬頻功率放大器 36
2-5-1 應用於Ka 頻帶之中性化暨預匹配寬頻功率放大器設計 36
2-5-2 電路模擬與量測結果 46
2-5-3結果比較與討論 53
第三章 應用於X頻段之改善增益壓縮暨中性化功率放大器 55
3-1 研究現況 55
3-2 改善電路效率架構 55
3-3 應用於X頻段之改善增益壓縮暨中性化功率放大器 57
3-3-1 應用於X頻段之改善增益壓縮暨中性化功率放大器設計 57
3-3-2 電路模擬與量測結果 65
3-3-3 結果比較與討論 73
第四章 應用X頻段之二元功率結合與多蒂氮化鎵功率放大器 76
4-1 研究現況 76
4-2 多蒂功率放大器簡介 76
4-3 應用X頻帶二元功率結合暨低阻抗匹配之氮化鎵功率放大器 79
4-3-1 應用X頻帶二元功率結合暨低阻抗匹配之氮化鎵功率放大器設計 79
4-3-2 電路模擬與量測結果 85
4-3-3 結果比較與討論 94
4-4 應用於X頻帶之氮化鎵多蒂功率放大器 96
4-4-1 應用於X頻帶之氮化鎵多蒂功率放大器設計 96
4-4-2 電路模擬結果 103
4-4-3 結果比較與討論 108
第五章 結論 109
5-1 結論 109
5-2 未來方向 110
參考文獻 111
參考文獻 [1] B. Park et al., "Highly Linear mm-Wave CMOS Power Amplifier," IEEE Trans. Microw. Theory Tech., vol. 64, no. 12, pp. 4535-4544, Dec. 2016.
[2] S. Shakib, H. C. Park, J. Dunworth, V. Aparin and K. Entesari, "20.6 A 28GHz efficient linear power amplifier for 5G phased arrays in 28nm bulk CMOS," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 352-353.
[3] C. W. Kuo, H. K. Chiou and H. Y. Chung, "An 18 to 33 GHz Fully-Integrated Darlington Power Amplifier With Guanella-Type Transmission-Line Transformers in 0.18 m CMOS Technology," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 12, pp. 668-670, Dec. 2013.
[4] C. H. Tsay, J. C. Kao, K. Y. Kao and K. Y. Lin, "A 27–34 GHz CMOS medium power amplifier with a flat power performance," in 2012 Asia Pacific Microwave Conference Proceedings, Kaohsiung, 2012, pp. 1-3
[5] J. Kim, W. Kim, H. Jeon, Y. Y. Huang, Y. Yoon, H. Kim, C. H. Lee, K.T. Kornegay, “A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer, ” IEEE J. Solid-State Circuits, vol.47, no.3, pp.599-614, Mar. 2012
[6] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[7] B.-H. Ku, S.-H. Back, and S. Hong, “A wideband transformer-coupld CMOS power amplifier for X-band multifunction chip,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1599-1609, Jun. 2011.
[8] Yongwang Ding and R. Harjani, "A high-efficiency CMOS +22-dBm linear power amplifier," IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1895-1900, Sept. 2005.
[9] Lu, A. V. H. Pham, M. Shaw and C. Saint, "Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation," IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, pp. 2320-2328, Nov. 2007.
[10] P. S. Chi, Z. M. Tsai, J. L. Kuo, K. Y. Lin and H. Wang, "An X-band, 23.8-dBm fully integrated power amplifier with 25.8% PAE in 0.18-μm CMOS technology," in The 40th European Microwave Conference, Paris, 2010, pp. 1678-1681.
[11] Bon-Hyun Ku, Sang-Hyun Baek and Songcheol Hong, "A X-band CMOS power amplifier with on-chip transmission line transformers," 2008 IEEE RFIC Symp., Atlanta, GA, 2008, pp. 523-526.
[12] P P. C. Huang, K. Y. Lin and H. Wang, "A 4–17 GHz Darlington Cascode Broadband Medium Power Amplifier in 0.18- mu m CMOS Technology," IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 43-45, Jan. 2010.
[13] R. Santhakumar, B. Thibeault, M. Higashiwaki, S. Keller, Z. Chen, U. K. Mishra, and R. A. York, “Two-Stage High-Gain High-Power Distributed Amplifier Using Dual-Gate GaN HEMTs,’’ IEEE Trans. Microw. Theory Tech., VOL. 59, NO. 8, Aug., pp.2059-2063, 2011.
[14] P. Dennler, F. van Raay, M. Seelmann-Eggebert, R. Quay, ‥ Senior Member, IEEE, and Oliver Ambacher , “Modeling and Realization of GaN-Based Dual-Gate HEMTs and HPA MMICs for Ku-Band Applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2011, pp. 1-4.
[15] A. Biondi, S. D′Angelo, F. Scappaviva, D. Resca and V. A. Monaco, "Compact GaN MMIC T/R module front-end for X-band pulsed radar," in 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, 2016, pp. 297-300.
[16] D. Kim, D. H. Lee, S. Sim, L. Jeon and S. Hong, "An X-Band Switchless Bidirectional GaN MMIC Amplifier for Phased Array Systems," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 878-880, Dec. 2014.
[17] R. Quaglia, V. Camarchia, J. J. Moreno Rubio, M. Pirola and G. Ghione, "A 4-W Doherty Power Amplifier in GaN MMIC Technology for 15-GHz Applications," IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp. 365-367, April 2017.
[18] M. Coffey, P. MomenRoodaki, A. Zai and Z. Popovic, "A 4.2-W 10-GHz GaN MMIC Doherty Power Amplifier," 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, 2015, pp. 1-4.
[19] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov and C. Fager, "A GaN MMIC Modified Doherty PA With Large Bandwidth and Reconfigurable Efficiency," IEEE Trans. Microw. Theory Tech., vol. 62, no. 12, pp. 3006-3016, Dec. 2014.
[20] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov, N. Rorsman and C. Fager, "A Wideband and Compact GaN MMIC Doherty Amplifier for Microwave Link Applications," IEEE Trans. Microw. Theory Tech., vol. 61, no. 2, pp. 922-930, Feb. 2013.
[21] 林厚安,「應用傳輸線型變壓器與自適應偏壓於C/X頻段之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國104年。
[22] 林佳慧,「應用單向化預失真、傳輸線型變壓器與二元功率結合技術於C/X頻段之寬頻全積體功率放大器之研製」,國立中央大學,碩士論文,民國105年。
[23] 張凱彥,「應用傳輸線型變壓器於C/X頻段之CMOS功率放大器與Ku頻段之GaN功率放大器之研製」,國立中央大學,碩士論文,民國106年。
指導教授 邱煥凱 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明