姓名 |
陳柏洹(Bo-Huan Chen)
查詢紙本館藏 |
畢業系所 |
數學系 |
論文名稱 |
(The isotopy classification of contact structures on S3)
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
|
摘要(中) |
由Lutz、Martinet及Eliashberg的工作,我們可得知:若以同痕方式進行分類,在三維球面
上的切觸結構已經被分類完成。
本文將會藉由half及full Lutz twist方法,來為每一個同痕類找出更為具體且可算的代表元
素。 |
摘要(英) |
By the works of Lutz, Martinet and Eliashberg, we have known that the isotopy classes of
contact structures on S^3 have been completely classified.
In this thesis, we will find a representative for each class in a more explicit and computable
form via the half and full Lutz twist. |
關鍵字(中) |
★ 微分幾何 ★ 切觸幾何 |
關鍵字(英) |
★ Differential geometry ★ Contact geometry |
論文目次 |
摘要............................................................................................................................................ i
Abstract...................................................................................................................................... iii
目錄............................................................................................................................................ v
一、Introduction .......................................................................................................... 1
二、Contact Topology.................................................................................................. 3
三、Standard Contact Structure on S3........................................................................ 7
四、Lutz Twist............................................................................................................. 9
五、Basic Obstruction Theory ..................................................................................... 13
5.1 The Obstruction Cocycle of Maps . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 The Obstruction Cocycle of Homotopies . . . . . . . . . . . . . . . . . . . . . 13
5.3 Eilenberg-MacLane Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 On a Cell Decomposable 3-Manifold . . . . . . . . . . . . . . . . . . . . . . . 16
六、Cobordisms of Framed Links ................................................................................ 19
6.1 Definition of Framing and Cobordism . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Constructing Framed Cobordism from Oriented Cobordism . . . . . . . . . . 20
6.3 Relation Between Obstruction and Cobordism . . . . . . . . . . . . . . . . . . 20
七、Construction ......................................................................................................... 23
7.1 One Generator in H3(S3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 The Positive Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 The Other Generator and the Negative Classes . . . . . . . . . . . . . . . . . 28
Bibliography.................................................................................................................................... 31 |
參考文獻 |
[1] Hansjorg Geiges, An Introduction to Contact Topology, Cambridge University Press, (2008).
[2] Yakov Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent.
Math. 98, 623-637 (1989).
[3] Robert Lutz, Sur quelques proprietes des formes differentielles en dimension trois, Universite
de Strasbourg, (1971).
[4] James F. Davis and Paul Kirk, Lecture Notes in Algebraic Topology, American Mathematical
Society, Graduate studies in mathematics ; 35, (2001).
[5] Loring W. Tu, An Introduction to Manifolds, Springer, Second Edition, (2011).
[6] Allen Hatcher, Algebraic Topology, Cambridge University Press, (2002). |
指導教授 |
姚美琳
|
審核日期 |
2018-7-24 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|