參考文獻 |
[1] Andersen, P. K., Borgan, $O$., Gill, R. D. and Keiding, N. (1993). Statistical models based on counting processes. Springer, New York.
[2] Bickel, P. J., Klaassen, C., Ritov, Y. and Wellner, J. (1993). Efficient and adaptive estimation for semi-parametric models. Baltimore, MD: Johns Hopkins University Press.
[3] Chang, I. S., Hsiung, C. A., Wang, M. C., and Wen, C. C. (2004a). An asymptotic theory for the nonparametric maximum likelihood estimator in the
Cox-gene model. (Revised for Bernoulli).
[4] Chang, I. S., Hsiung, C. A., Wen, C. C. , and Wu, Y. J. (2004b). Isotonic regression and concave regression with random Bernstein polynomials. (Revised for Biometrika).
[5] Chen, M. H., Ibrahim, J. G., and Sinha, D. (1999). A new Bayesian model for
survival data with a surviving fraction. Journal of American Statistical Association 94, 909-919.
[6] Chen, M. H. and Ibrahim, J. G. (2001). Maximum likelihood methods for cure
rate models with missing covariates. Biometrics 57, 43-52.
[7] Donnelly, C. A., Ghanl, A. C., Leung, G. M., Hedley, A. J., Fraser, C., Rifey, S., Abu-Radded, L. J., Ho, L. M., Thach, T. Q., Chau, P., Chan, K. P., Lam, T. H., Tse, L. Y., Tsang, T., Llu, S. H., Kong, J. H. B., Lau, E. M. C., Ferguson, N. M., and Anderson, R. M. (2003). Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Knog. Lancet 361, 1761-1766.
[8] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.
[9] Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long term survivors. Biometrics 38, 1041-1046.
[10] Farewell, V. T. (1986). Mixture models in survival analysis: are they worth the risk? Can. J. Statist. 14, 257-256.
[11] Goldman, A. I. (1984). Survivorship analysis when cure is a possibility: A Monte Carlo study. Statistics in Medicine 3, 153-163.
[12] Greenhouse, J. B. and Wolfe, R. A. (1984). A competing risks derivation of a mixture model for the analysis of survival data. Communications in Statistics-Theory and Methods 13, 3133-3154.
[13] Kosorok, M., Lee, B., and Fine, J. (2003). Robust inference for proportional hazards univariate frailty regression models. To appear, Ann. statist.
[14] Kuk, A. Y. C. (1992). A semiparametric mixture model for the analysis of competing risks data. Australian Journal of Statistics 34, 169-180.
[15] Kuk, A. Y. C., and Chen, C. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika 79, 531-541.
[16] Li, C.-S., Taylor, M. G., and Judy, P. S. (2001). Identifiability of cure models. Statistics & Probability Letters 54, 389-395.
[17] Lingappa, J. R., McDonald, L. C., Simone, P., and Parashar, U. D. (2004). Wresting SARS from uncertainty. Emerg Infect. Dis. URL: http://www.cdc.gov/ncidod/EID/vol10n02/03-1032.thm
[18] Lorentz, C. G. (1986). Bernstein Polynomials, Chelsea, New York.
[19] Murphy, S. A. (1994) Consistency in a proportional hazards
model incorporating a random effect. Ann. Statist., 22, 712-731.
[20] Murphy, S. A., Rossini, A. J. and van der Vaart, A. W. (1997)
Maximum likelihood estimation in the proportional odds model. J. Amer. Statist. Assoc., 92, 968-976.
[21] Parner, E. (1998) Asymptotic theory for the correlated gamma-frailty model. Ann. Statist., 26, 183-214.
[22] Peng, Y. (2003). Fitting semiparametric cure models. Computational statistics & data analysis 41, 481-490.
[23] Peng, Y., and Dear, K. B. G. (2000). A nonparametric mixture model for cure
rate estimation. Biometrics 56, 237-243.
[24] Rudin, W. (1976) Principles of mathematical analysis. 3ed. McGraw-Hill, New York.
[25] Sy, J. P., and Taylor, J. M. G. (2000). Estimation in a Cox proportional hazards cure model. Biometrics 56, 227-236.
[26] Taylor, J. M. G. (1995). Semi-parametric estimation in failure time mixture models, Biometrics 51, 899-907.
[27] Tsodikov, A. (1998). A proportional hazard model taking account of long-term survivors. Biometrics 54, 1508-1516.
[28] van der Vaart, A. W. and Wellner, J. A. (1996) Weak Convergence and Empirical Processes. Springer Verlag, New York.
[29] van der Vaart, A. W. (1998) Asymptotic Statistics. Cambridge University Press, Cambridge.
[30] Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression model of surviving fraction: An application to the analysis of "permanent employment" in Japan. Journal of the American Statistical Association 87, 284-292. |